upper permian
Recently Published Documents


TOTAL DOCUMENTS

915
(FIVE YEARS 184)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Fernando Martínez ◽  
Mauricio Parra ◽  
Rodrigo Gonzalez ◽  
Cristopher López ◽  
Patiño Ana ◽  
...  

We integrated new and existing geological, geochronological, thermochronological, and two-dimensional (2D) seismic data from the Salar de Punta Negra Basin to define the Late Paleozoic–Cenozoic tectonic evolution of the inner Andean forearc of northern Chile more precisely. Our results indicate that this region experienced early Late Paleozoic–Mesozoic crustal extension, creating several basement half-graben structures bounded by east- and west-dipping master faults. These extensional basins were filled by Upper Permian to Jurassic volcanic and sedimentary (continental and marine) syn-rift deposits. The genesis of these structures is related to the early breakup of the western Gondwana continent and the development of the large Tarapacá Basin in northern Chile and southern Perú. Subsequently, Late Cretaceous to Paleocene contraction occurred, which led to the tectonic inversion of the pre-existing rift system and the uplift of the Paleozoic–Mesozoic syn-rift deposits. Seismic data show that Upper Cretaceous and Paleocene synorogenic deposits accumulated along and over inversion anticlines, recording the initial contraction and marking the change from an extensional to a contractional tectonic setting. During the final episodes of basin inversion, crustal shortening was accommodated by the Eocene to recent basement reverse faulting accompanied by the rapid exhumation of basement pre-rift blocks, which served as the principal sources for the sediments that filled the pre-Andean basins during the Late Cenozoic. Finally, the exhumed basement pre-rift blocks and the reverse faults compartmentalized the contractional intermontane basins, which constitute the main low topographic relief of the inner forearc of northern Chile.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaolin Qi ◽  
Yalin Li ◽  
Chengshan Wang

The Qamdo Basin in eastern Tibet has significant petroleum potential and previous studies indicate that the basin contains thick potential source rocks of the Late Permian and the Late Triassic ages. In this paper, the petroleum potential of samples from measured the Upper Permian and Upper Triassic outcrop sections was evaluated on the basis of sedimentological, organic petrographic and geochemical analyses. Initial evaluations of total organic carbon contents indicated that shale samples from the Upper Permian Tuoba Formation and the Upper Triassic Adula and Duogala Formations have major source rock potential, while carbonate rocks from the Upper Triassic Bolila Formation are comparatively lean in organic matter More detailed analyses of OM-rich shale samples from the Tuoba, Adula and Duogala Formations included Rock-eval, elemental analyses, gas chromatography and organic petrography. Maceral compositions and plots of atomic O/C versus H/C indicate that the organic matter present in the samples is primarily Type II with a mixed source. Analyses of acyclic isoprenoid biomarkers indicate the organic matter was deposited under reducing and sub-to anoxic conditions. Based on the high vitrinite reflectance (Ro>1.3%) and Rock-eval data, the samples are classified as highly to over-mature, suggesting that the Tuoba, Adula and Duogaila Formation shales may generate thermogenic gas. Source rock intervals in the three formations are interpreted to have been deposited in marginal-marine environment during transgressions and under a warm and moist climatic condition.


2021 ◽  
Vol 906 (1) ◽  
pp. 012011
Author(s):  
Valery Y. Fridovsky ◽  
Maxim Kudrin

Abstract The paper presents the first results of investigation of the Re–Os isotope system of native gold from the Malo-Tarynskoe, Khangalas, Bazovskoe, and chalcopyrite from the Dvoinoe orogenic gold deposits and stibnite from the Maltan Au-Sb depositin the Kular–Nera terrane, Northeast Asia. The deposits are spatially related to NW-trending lithospheric-scale major brittle faults or controlled by subsidiary faults and fracture zones. Such zones served as pathways for fluids rising from below the crust, and they have a long tectonic and reactivation history. The Kular–Nera terrane consists of Upper Permian, Triassic, and Lower Jurassic clastic sedimentary-rock sequences, metamorphosed to initial stages of greenschist facies. Magmatism is manifested by Kimmeridgian–Berriasian S- and I-types granitoids and mafic dikes of the Tas–Kystabyt magmatic belt. Re concentration in gold varies from 0.168 to 6.997 ppb, and that of osmium – from 0.068 to 1.443 ppb. Chalcopyrite from the Dvoinoe deposit occurrence contains 0.1522 ppb Re and 0.499 ppb Os. Stibnite from the Maltan Au-Sb depositoccurrence contains 0. 236 ppb Re and 0.903 ppb Os. The Re–Os ages of gold from the Malo-Tarynskoe (147.8 ± 3.8 Ma) and Bazovskoe (147.2 ± 1.8 Ma) and Khangalas (137.1 ± 7.6 Ma) orogenic deposits and the Maltan Au-Sb deposits (69.7±1.9 Ma) are determined. Malo-Tarynskoe and Bazovskoe represent the earliest known orogenic gold mineralization in the Kular–Nera terrane. The data obtained permit us to correlate the initiation of orogenic gold-ore systems with the completion of the formation at the end of the Late Jurassic Uyandina–Yasachnaya volcanic belt, crystallization and subsequent cooling in the Late Jurassic–early Early Cretaceous of granitoid massifs of the Tas-Kystabyt magmatic belt, and subduction–accretionary events at the northeastern active continental margin of the Siberian craton. Maltan Au-Sb deposit is related to completion of the formation of the Albian-Late Cretaceous Okhotsk–Chukotka volcano-plutonic belt. Contrasting mantle and/or crustal sources of ore-forming material are established. The osmium initial isotopic ratio in gold 187Os/188Os = 0.2210-0.4275 and antimonite (0,2543-0,2976) is typical for the ore-forming material from the fertile mantle reservoir, and for chalcopyrite (3.1904) – from the crust.


2021 ◽  
Vol 251 ◽  
pp. 698-711
Author(s):  
Grigorii Cherdantsev ◽  
Aleksander Zharkov

The article discusses the prospects for the oil and gas content of the Upper Permian deposits in the southwestern marginal part of the Vilyui syneclise. In this margin, the Permian terrigenous complex with proven oil and gas productivity in the central part of the syneclise, pinches out. The study area, represented by the monoclinal slopes of the Vilyui syneclise, is considered a promising area for the exploration of non-structural hydrocarbon traps in the Upper Paleozoic sediments. The objectives of the study include identifying general patterns of sediment formation, associated mainly with the development of the alluvial complex, and substantiating the potential opportunities of migration and accumulation of hydrocarbons in the predicted traps. The research is based on the interpretation of the latest seismic surveys and prior-years geological and geophysical data. Authors carried out structural and paleo-structural analysis, identified lithofacies in the well log, generalized and analyzed the geochemical conditions of the oil and gas content of the Upper Permian deposits, traced the pinching out of the Upper Permian deposits on the southwestern margin of the syneclise, and also outlined areas of river valleys development that form zones of advanced reservoirs. The results of the studies have validated promising oil and gas accumulation zones on the southwestern slopes of the syneclise associated with non-anticlinal hydrocarbon traps. Authors also drew up a diagram of the oil and gas potential of the Upper Permian deposits. The obtained results are of interest for prospecting for oil and gas in the area under study.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lingyun Zhao ◽  
Peiming Zhou ◽  
Yi Lou ◽  
Youzhou Zhao ◽  
Wei Liu ◽  
...  

China’s marine-continental transitional facies shale gas resources are abundant with shale gas resources of about 19.8 trillion cubic meters, while the exploration and development of these shale gas resources are still in the initial stage. The Upper Permian Longtan coal series shale is one of the most important transitional shales in the Yangtze platform, China. In this study, the comprehensive methods of mineralogy and organic geochemistry are used to discuss the characteristic of organic matter and sedimentary environment of the Longtan coal series shale in western Guizhou Province, South China. The results show that (1) the total organic carbon (TOC) content of this shale ranges in 0.6%-28.21%, mainly in 3%-12%, indicating a “good-excellent” hydrocarbon source rock, and its vitrinite reflectance ( R o ) ranges from 1.48% to 2.93%, indicating a high-overmature organic matter; (2) the organic matter in this shale is multiorigin, and most of them come from the terrestrial higher plant while the rest come from the plankton; (3) type index (TI) of organic matter is from -65 to 41, indicating most of the kerogens which are II1-III types; and (4) the sedimentary environment of this shale is dominated by suboxic-anoxic fresh water environment, which provides a favorable condition for the preservation of organic matter. In addition, the warm and humid climate during the Late Permian in the Yangtze platform promotes plant growth, and as a result, the Longtan coal series shale is rich in organic matter and has great potential of shale gas exploration and development.


2021 ◽  
Author(s):  
Amir Rustamovich Ayupov ◽  
Sergey Faizovich Khafizov ◽  
Kurmangazy Orinbgazievich Iskaziev

Abstract The analysis of the facies distribution of reservoirs within the Moscow-Artinskian sedimentation rim within the Northern part of the Pre-Caspian Basin was carried out. The Teplovsko-Tokarevskaya group of deposits is a chain of carbonate structures stretched in the sub-latitudinal direction. They are consist mainly of bioherm structures, which include tubifytes, foraminifera, crinoidea, ostracods, ostracods, etc. From the lithological point of view, the reservoir rocks are represented by dolomite-limestone differences-from organic limestones to secondary chemogenic dolomites. The influence of facies distribution and secondary dolomitization on the structure of the pore space remains controversial and requires detailed study. The concepts of secondary dolomitization were analyzed and one of the concepts of the formation of secondary dolomites and anhydrites was used to justify the facies distribution: Zones of secondary transformation (dolomitization) form a sweet spots zone in the Artinskian carbonate horizon when high-salinity (Mg2+) waters from the Filippovsky horizon carbonates are infiltrates to Artinskian carbonate. As a result of the discharge of elision waters during digenetic dehydration of gypsum. After the anhydride overlaying of the Artinskian carbonate structure, several regressive-transgressive cycles occurred, which formed a sequence of consistent dolomite-limestone and gypsum layers in the Filippovskian time. During the diagenesis water contained in the gypsum was dehydrated into the permeable zones in carbonates of the Filippovsky horizon, followed by unloading in the region of the Artinskian horizon. Evaporite sedimentation of chemogenic carbonates and gypsum created a condition for the subsequent infiltration of sulphate and magnesium waters in the direction dip formation angle. The source of magnesium is the water remaining after the precipitation of gypsum and carbonates in the Filippovskian time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guichun Wu ◽  
Zhansheng Ji ◽  
Gary G. Lash ◽  
Jianxin Yao

AbstractThe Bangong-Nujiang Suture Zone (BNSZ) of Tibet (Xizang) has been interpreted to represent a relic of the Bangong-Nujiang Ocean. However, the existence of this ocean during Triassic time remains a point of contention. A sedimentary succession spanning the Upper Permian through Triassic described from the central BNSZ suggests that the Lhasa and South Qiangtang terranes were contiguous thus negating the existence of a terrane-separating ocean during Triassic time. However, the apparent lack of Triassic deposits in the west BNSZ has called into question the existence of Triassic deposits in the central region of the BNSZ. Our biostratigraphic work in the Wuga Formation of the Gaize area has yielded abundant Norian conodonts thus confirming the existence of Upper Triassic deposits in the west BNSZ. The clastic deposits of the Wuga Formation are herein interpreted to be of Rhaetian age. Moreover, intercalated limestone and chert are termed the Dongnale Formation of Norian age. The Norian to Rhaetian succession can be correlated with strata of the central BNSZ as well as with deposits of the Lhasa Terrane and the South Qiangtang Terrane. Similar stratigraphies among these regions through the Late Triassic suggests a shared depositional setting and that the BNSZ was not an ocean in Norian and Rhaetian time.


Sign in / Sign up

Export Citation Format

Share Document