Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data

Author(s):  
Jixian Zhang ◽  
Liu Zhengjun ◽  
Sun Xiaoxia
2021 ◽  
Vol 13 (6) ◽  
pp. 1225
Author(s):  
Xin Zhang ◽  
Ling Du ◽  
Shen Tan ◽  
Fangming Wu ◽  
Liang Zhu ◽  
...  

Land use/land cover (LULC) change has been recognized as one of the most important indicators to study ecological and environmental changes. Remote sensing provides an effective way to map and monitor LULC change in real time and for large areas. However, with the increasing spatial resolution of remote sensing imagery, traditional classification approaches cannot fully represent the spectral and spatial information from objects and thus have limitations in classification results, such as the “salt and pepper” effect. Nowadays, the deep semantic segmentation methods have shown great potential to solve this challenge. In this study, we developed an adaptive band attention (BA) deep learning model based on U-Net to classify the LULC in the Three Gorges Reservoir Area (TGRA) combining RapidEye imagery and topographic information. The BA module adaptively weighted input bands in convolution layers to address the different importance of the bands. By comparing the performance of our model with two typical traditional pixel-based methods including classification and regression tree (CART) and random forest (RF), we found a higher overall accuracy (OA) and a higher Intersection over Union (IoU) for all classification categories using our model. The OA and mean IoU of our model were 0.77 and 0.60, respectively, with the BA module and were 0.75 and 0.58, respectively, without the BA module. The OA and mean IoU of CART and RF were both below 0.51 and 0.30, respectively, although RF slightly outperformed CART. Our model also showed a reasonable classification accuracy in independent areas well outside the training area, which indicates the strong model generalizability in the spatial domain. This study demonstrates the novelty of our proposed model for large-scale LULC mapping using high-resolution remote sensing data, which well overcomes the limitations of traditional classification approaches and suggests the consideration of band weighting in convolution layers.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1739 ◽  
Author(s):  
Hejia Wang ◽  
Weihua Xiao ◽  
Yong Zhao ◽  
Yicheng Wang ◽  
Baodeng Hou ◽  
...  

Evapotranspiration (ET) has undergone profound changes as a result of global climate change and anthropogenic activities. The construction of the Three Gorges Reservoir (TGR) has led to changes in its land use/land cover (LUCC) and local climate, which in turn has changed ET processes in the TGR region. In this paper, the CLM4.5 land surface model is used to simulate and analyze the spatiotemporal variability of ET between 1993 and 2013. Four experiments were conducted to quantify the contribution rate of climate change and LUCC to changes in ET processes. The results show that the climate showed a warming and drying trend from 1993 to 2013, and the LUCC indicates decreasing cropland with increasing forest, grassland, water bodies and urban areas. These changes increased the mean annual ET by 13.76 mm after impoundment. Spatially, the vegetation transpiration accounts for the largest proportion in ET. The decreasing relative humidity and increasing wind speeds led to an increase in vegetation transpiration and ground evaporation, respectively, in the center of the TGR region, while the LUCC drove changes in ET in water bodies, urban areas and high-altitude regions in the TGR region.


Sign in / Sign up

Export Citation Format

Share Document