Unsupervised segmentation parameter selection using the local spatial statistics for remote sensing image segmentation

Author(s):  
Yongji Wang ◽  
Qingwen Qi ◽  
Ying Liu ◽  
Lili Jiang ◽  
Jun Wang
Author(s):  
Filiberto Pla ◽  
Gema Gracia ◽  
Pedro García-Sevilla ◽  
Majid Mirmehdi ◽  
Xianghua Xie

2012 ◽  
Vol 532-533 ◽  
pp. 732-737
Author(s):  
Xi Jie Wang ◽  
Xiao Fan Zhao

This paper presents a new multi-resolution Markov random field model in Contourlet domain for unsupervised texture image segmentation. In order to make full use of the merits of Contourlet transformation, we introduce the taditional MRMRF model into Contourlet domain, in a manner of variable interation between two components in the tradtional MRMRF model. Using this method, the new model can automatically estimate model parameters and produce accurate unsupervised segmentation results. The results obtained on synthetic texture images and remote sensing images demonstrate that a better segmentation is achieved by our model than the traditional MRMRF model.


Author(s):  
Y. Yang ◽  
H. T. Li ◽  
Y. S. Han ◽  
H. Y. Gu

Image segmentation is the foundation of further object-oriented image analysis, understanding and recognition. It is one of the key technologies in high resolution remote sensing applications. In this paper, a new fast image segmentation algorithm for high resolution remote sensing imagery is proposed, which is based on graph theory and fractal net evolution approach (FNEA). Firstly, an image is modelled as a weighted undirected graph, where nodes correspond to pixels, and edges connect adjacent pixels. An initial object layer can be obtained efficiently from graph-based segmentation, which runs in time nearly linear in the number of image pixels. Then FNEA starts with the initial object layer and a pairwise merge of its neighbour object with the aim to minimize the resulting summed heterogeneity. Furthermore, according to the character of different features in high resolution remote sensing image, three different merging criterions for image objects based on spectral and spatial information are adopted. Finally, compared with the commercial remote sensing software eCognition, the experimental results demonstrate that the efficiency of the algorithm has significantly improved, and the result can maintain good feature boundaries.


Author(s):  
Chenming Li ◽  
Xiaoyu Qu ◽  
Yao Yang ◽  
Hongmin Gao ◽  
Yongchang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document