remote sensing image
Recently Published Documents


TOTAL DOCUMENTS

3962
(FIVE YEARS 1373)

H-INDEX

63
(FIVE YEARS 14)

Author(s):  
Shuang Wang ◽  
Xiutiao Ye ◽  
Yu Gu ◽  
Jihui Wang ◽  
Yun Meng ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Mengxing Huang ◽  
Shi Liu ◽  
Zhenfeng Li ◽  
Siling Feng ◽  
Di Wu ◽  
...  

A two-stream remote sensing image fusion network (RCAMTFNet) based on the residual channel attention mechanism is proposed by introducing the residual channel attention mechanism (RCAM) in this paper. In the RCAMTFNet, the spatial features of PAN and the spectral features of MS are extracted, respectively, by a two-channel feature extraction layer. Multiresidual connections allow the network to adapt to a deeper network structure without the degradation. The residual channel attention mechanism is introduced to learn the interdependence between channels, and then the correlation features among channels are adapted on the basis of the dependency. In this way, image spatial information and spectral information are extracted exclusively. What is more, pansharpening images are reconstructed across the board. Experiments are conducted on two satellite datasets, GaoFen-2 and WorldView-2. The experimental results show that the proposed algorithm is superior to the algorithms to some existing literature in the comparison of the values of reference evaluation indicators and nonreference evaluation indicators.


2022 ◽  
Vol 14 (2) ◽  
pp. 326
Author(s):  
Ke Wang ◽  
Hainan Chen ◽  
Ligang Cheng ◽  
Jian Xiao

Many studies have focused on performing variational-scale segmentation to represent various geographical objects in high-resolution remote-sensing images. However, it remains a significant challenge to select the most appropriate scales based on the geographical-distribution characteristics of ground objects. In this study, we propose a variational-scale multispectral remote-sensing image segmentation method using spectral indices. Real scenes in remote-sensing images contain different types of land cover with different scales. Therefore, it is difficult to segment images optimally based on the scales of different ground objects. To guarantee image segmentation of ground objects with their own scale information, spectral indices that can be used to enhance some types of land cover, such as green cover and water bodies, were introduced into marker generation for the watershed transformation. First, a vector field model was used to determine the gradient of a multispectral remote-sensing image, and a marker was generated from the gradient. Second, appropriate spectral indices were selected, and the kernel density estimation was used to generate spectral-index marker images based on the analysis of spectral indices. Third, a series of mathematical morphology operations were used to obtain a combined marker image from the gradient and the spectral index markers. Finally, the watershed transformation was used for image segmentation. In a segmentation experiment, an optimal threshold for the spectral-index-marker generation method was identified. Additionally, the influence of the scale parameter was analyzed in a segmentation experiment based on a five-subset dataset. The comparative results for the proposed method, the commonly used watershed segmentation method, and the multiresolution segmentation method demonstrate that the proposed method yielded multispectral remote-sensing images with much better performance than the other methods.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Xiu Zhang

Image has become one of the important carriers of visual information because of its large amount of information, easy to spread and store, and strong sense of sense. At the same time, the quality of image is also related to the completeness and accuracy of information transmission. This research mainly discusses the superresolution reconstruction of remote sensing images based on the middle layer supervised convolutional neural network. This paper designs a convolutional neural network with middle layer supervision. There are 16 layers in total, and the seventh layer is designed as an intermediate supervision layer. At present, there are many researches on traditional superresolution reconstruction algorithms and convolutional neural networks, but there are few researches that combine the two together. Convolutional neural network can obtain the high-frequency features of the image and strengthen the detailed information; so, it is necessary to study its application in image reconstruction. This article will separately describe the current research status of image superresolution reconstruction and convolutional neural networks. The middle supervision layer defines the error function of the supervision layer, which is used to optimize the error back propagation mechanism of the convolutional neural network to improve the disappearance of the gradient of the deep convolutional neural network. The algorithm training is mainly divided into four stages: the original remote sensing image preprocessing, the remote sensing image temporal feature extraction stage, the remote sensing image spatial feature extraction stage, and the remote sensing image reconstruction output layer. The last layer of the network draws on the single-frame remote sensing image SRCNN algorithm. The output layer overlaps and adds the remote sensing images of the previous layer, averages the overlapped blocks, eliminates the block effect, and finally obtains high-resolution remote sensing images, which is also equivalent to filter operation. In order to allow users to compare the superresolution effect of remote sensing images more clearly, this paper uses the Qt5 interface library to implement the user interface of the remote sensing image superresolution software platform and uses the intermediate layer convolutional neural network and the remote sensing image superresolution reconstruction algorithm proposed in this paper. When the training epoch reaches 35 times, the network has converged. At this time, the loss function converges to 0.017, and the cumulative time is about 8 hours. This research helps to improve the visual effects of remote sensing images.


2022 ◽  
Vol 14 (1) ◽  
pp. 196
Author(s):  
Tong Gao ◽  
Hao Chen ◽  
Wen Chen

The support tensor machine (STM) extended from support vector machine (SVM) can maintain the inherent information of remote sensing image (RSI) represented as tensor and obtain effective recognition results using a few training samples. However, the conventional STM is binary and fails to handle multiclass classification directly. In addition, the existing STMs cannot process objects with different sizes represented as multiscale tensors and have to resize object slices to a fixed size, causing excessive background interferences or loss of object’s scale information. Therefore, the multiclass multiscale support tensor machine (MCMS-STM) is proposed to recognize effectively multiclass objects with different sizes in RSIs. To achieve multiclass classification, by embedding one-versus-rest and one-versus-one mechanisms, multiple hyperplanes described by rank-R tensors are built simultaneously instead of single hyperplane described by rank-1 tensor in STM to separate input with different classes. To handle multiscale objects, multiple slices of different sizes are extracted to cover the object with an unknown class and expressed as multiscale tensors. Then, M-dimensional hyperplanes are established to project the input of multiscale tensors into class space. To ensure an efficient training of MCMS-STM, a decomposition algorithm is presented to break the complex dual problem of MCMS-STM into a series of analytic sub-optimizations. Using publicly available RSIs, the experimental results demonstrate that the MCMS-STM achieves 89.5% and 91.4% accuracy for classifying airplanes and ships with different classes and sizes, which outperforms typical SVM and STM methods.


Sign in / Sign up

Export Citation Format

Share Document