Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays

2016 ◽  
Vol 130 ◽  
pp. 37-52 ◽  
Author(s):  
A.M. Lontsi ◽  
M. Ohrnberger ◽  
F. Krüger
2013 ◽  
Vol 300-301 ◽  
pp. 955-958
Author(s):  
Pei Hsun Tsai ◽  
Chih Chun Lou

In the paper the shear wave velocity profile is studied using the MASW test. The experimental dispersion curves were obtained from the signal process proposed by Ryden. Theoretical dispersion curve can be constructed by thin layer stiffness matrix method. A real-parameter genetic algorithm is required to minimize the error between the theoretical and experimental dispersion curves. To reduce the error of experimental and theoretical dispersion curve using real-parameter genetic algorithm is feasible. The results show that the soil layers of the study area can be modeled as a sandy fill overlaid on an underlying half space. Test results also show that the asymptotes at high frequencies of the fundamental mode approach the phase velocities for the fill of 190 m/s. The depths of weathered bedrock estimating from dispersion curves match well with that of borehole data.


2021 ◽  
Vol 9 (8) ◽  
pp. 840
Author(s):  
Yang Dong ◽  
Shengchun Piao ◽  
Lijia Gong ◽  
Guangxue Zheng ◽  
Kashif Iqbal ◽  
...  

Recent studies have illustrated that the Multichannel Analysis of Surface Waves (MASW) method is an effective geoacoustic parameter inversion tool. This particular tool employs the dispersion property of broadband Scholte-type surface wave signals, which propagate along the interface between the sea water and seafloor. It is of critical importance to establish the theoretical Scholte wave dispersion curve computation model. In this typical study, the stiffness matrix method is introduced to compute the phase speed of the Scholte wave in a layered ocean environment with an elastic bottom. By computing the phase velocity in environments with a typical complexly varying seabed, it is observed that the coupling phenomenon occurs among Scholte waves corresponding to the fundamental mode and the first higher-order mode for the model with a low shear-velocity layer. Afterwards, few differences are highlighted, which should be taken into consideration while applying the MASW method in the seabed. Finally, based on the ingeniously developed nonlinear Bayesian inversion theory, the seafloor shear wave velocity profile in the southern Yellow Sea of China is inverted by employing multi-order Scholte wave dispersion curves. These inversion results illustrate that the shear wave speed is below 700 m/s in the upper layers of bottom sediments. Due to the alternation of argillaceous layers and sandy layers in the experimental area, there are several low-shear-wave-velocity layers in the inversion profile.


Author(s):  
Sean K. Ahdi ◽  
Shamsher Sadiq ◽  
Okan Ilhan ◽  
Yousef Bozorgnia ◽  
Youssef M. A. Hashash ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document