scholarly journals Study of bovine sperm motility in shear-thinning viscoelastic fluids

2019 ◽  
Vol 88 ◽  
pp. 130-137 ◽  
Author(s):  
Toru Hyakutake ◽  
Koichi Sato ◽  
Kenta Sugita
1980 ◽  
Vol 13 (5) ◽  
pp. 357-367 ◽  
Author(s):  
Rebecca B. Siegel ◽  
Finnie A. Murray ◽  
W.E. Julien ◽  
A.L. Moxon ◽  
H.R. Conrad

2015 ◽  
Vol 48 (12) ◽  
pp. 2941-2947 ◽  
Author(s):  
Toru Hyakutake ◽  
Hiroki Suzuki ◽  
Satoru Yamamoto

2013 ◽  
Vol 25 (1) ◽  
pp. 183
Author(s):  
M. Ahmad ◽  
N. Ahmad ◽  
A. Riaz ◽  
M. Anzar

Extent and timing of alterations in structures and functions of sperm after its placement in the female reproductive tract are important for successful fertilization. To our knowledge, the few reports are available on the kinetics of alterations in bovine sperm structures and functions during pathway to their death. Therefore, the present study was conducted to determine the changes in motility, acrosome and plasma membrane asymmetry in fresh and frozen–thawed semen during incubation at 37°C over the period of 24 h. Semen was collected from 3 breeding beef bulls, pooled, and considered as one replicate (total replicates = 5). Each pooled semen sample was diluted in Tris-citric acid egg yolk glycerol extender (pH 6.8), cooled to +4°C over 90 min, and then cryopreserved by a programmable cell freezer. Fresh (pooled semen) and frozen–thawed semen were incubated at 37°C for 24 h. Each semen sample was evaluated for sperm motility with computer-assisted semen analysis and acrosomal integrity and plasma membrane asymmetry using fluorescein isothiocyanate-peanut agglutinin/propidium iodide and Annexin V/propidium iodide assays, respectively, at 0, 2, 4, 6, 12, and 24 h of incubation at 37°C, with a flow cytometer. Statistical analysis was conducted using PROC MIXED model in statistical analysis system as 2 (semen types) × 6 (times) factorial model, using time as repeated measure. Progressive motility was higher (P < 0.05) in fresh than in frozen–thawed semen until 6 h. Progressive motility declined (P < 0.05) below the threshold level (i.e. 30%) much later (12 h) in fresh as compared with frozen–thawed semen (2 h). However, acrosomal integrity and plasma membrane asymmetry deteriorated (P < 0.05) below threshold at the same time interval (2 h) in both fresh and frozen–thawed semen. Viable sperm (AN–/PI–) remained higher (P < 0.05) during the first 6 h in fresh than in frozen–thawed semen and declined (P < 0.05) below the threshold at 12 h in fresh and at 6 h in frozen–thawed semen. In fresh semen, the necrotic sperm (AN–/PI+) population increased (P < 0.05) over time and reached maximum (97%) at 24 h. In frozen–thawed semen, a mixed population of late apoptotic (53%) and necrotic (34%) sperm was found at 24 h. In conclusion, the alterations in sperm motility, acrosomes, plasma membrane integrity, and asymmetry were slower in fresh than in frozen–thawed semen. Fresh sperm followed necrosis and frozen–thawed sperm underwent necrosis and apoptosis-like pathways, respectively. This study was supported by the Canadian Commonwealth Scholarship Program by the Canadian Bureau for International Education (CBIE), and Agriculture and Agri-Food Canada.


2009 ◽  
Vol 45 (8) ◽  
pp. 483-489 ◽  
Author(s):  
Hehai Wang ◽  
Michael L. Looper ◽  
Zelpha B. Johnson ◽  
Rick W. Rorie ◽  
Charles F. Rosenkrans

2020 ◽  
Vol 32 (2) ◽  
pp. 183
Author(s):  
Y. Honkawa ◽  
T. Fujikawa ◽  
N. Miura ◽  
C. Kubota

It is difficult to maintain sperm in liquid storage for a long time, compared with permanent frozen storage in liquid nitrogen. Antioxidants have been reported to improve the quality and fertility of liquid-stored semen. In this study, we investigated whether antioxidants can extend the motility and fertility of frozen-thawed sperm in liquid storage. Frozen-thawed semen from one Japanese black bull (one ejaculate) was diluted in Tris-citrate-fructose (TCF) diluent with 10% (v/v) egg yolk to a sperm concentration of 1×107 spermmL−1. The antioxidants β-mercaptoethanol (βMe) and glutathione (GSH) were added independently, at various concentrations (0.1, 0.5, 1, and 5mM) to sperm suspensions, and these preparations were compared with Control (no added antioxidant). Sperm suspensions were packaged in centrifuge tubes and placed at 17°C in air and monitored daily until sperm motility had stopped (up to 14 days). Sperm motility was analysed by the Sperm Motility Analysis System (SMAS; Ditect Co. Ltd), and the percentage of progressively motile sperm (straight-line velocity (VSL) of &gt;25μm s−1; Grade A classified by WHO manual), compared with that recorded on Day 0 (100%), was determined each day. For evaluation of fertilizing ability, after incubation in liquid storage for 0, 3, 5, and 7 days, sperm were used for IVF with invitro-matured oocytes (30 oocytes per treatment, three replicates). Embryo development was recorded as the proportion of embryos that reached blastocyst by 8 days after IVF. Data for motility were analysed using one-way ANOVA with Tukey test, and embryo development using chi-squared test. A P-value&lt;0.05 was considered statistically significant. At 7 days, the percentage of progressively motile sperm was significantly higher for 0.5, 1, and 5mM βMe than for Control (30.8%, 48.1%, and 50.3%, vs. 0%, respectively). Treatments with 1 and 5mM βMe maintained some sperm progressive motility for 14 days (9.5% and 14.5%). Treatment with GSH showed the same trend at 7 days (32.2%, 36.3%, and 13.7% for 0.5, 1, and 5mM, vs. 0% for Control); 1 and 5mM GSH maintained sperm progressive motility over 10 days (24.8% and 4.4%). In both antioxidant treatments, embryo development was achieved with sperm stored for up to 5 days (Day 0 vs. Day 5 for 0.1mM βMe: 17.6% vs. 13.8%; for 1.0mM GSH: 26.0% vs. 6.7%; for Control: 17.6% vs. 0%). In this study, antioxidants extended both motility and fertility of frozen-thawed bovine sperm in liquid storage. This result suggests the possibility of application to AI using liquid-stored bovine semen.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 535 ◽  
Author(s):  
Mira Cho ◽  
Sun Ok Hong ◽  
Seung Hak Lee ◽  
Kyu Hyun ◽  
Ju Min Kim

Viscoelastic fluids, including particulate systems, are found in various biological and industrial systems including blood flow, food, cosmetics, and electronic materials. Particles suspended in viscoelastic fluids such as polymer solutions migrate laterally, forming spatially segregated streams in pressure-driven flow. Viscoelastic particle migration was recently applied to microfluidic technologies including particle counting and sorting and the micromechanical measurement of living cells. Understanding the effects on equilibrium particle positions of rheological properties of suspending viscoelastic fluid is essential for designing microfluidic applications. It has been considered that the shear-thinning behavior of viscoelastic fluid is a critical factor in determining the equilibrium particle positions. This work presents the lateral particle migration in two different xanthan gum-based viscoelastic fluids with similar shear-thinning viscosities and the linear viscoelastic properties. The flexibility and contour length of the xanthan gum molecules were tuned by varying the ionic strength of the solvent. Particles suspended in flexible and short xanthan gum solution, dissolved at high ionic strength, migrated toward the corners in a square channel, whereas particles in the rigid and long xanthan gum solutions in deionized water migrated toward the centerline. This work suggests that the structural properties of polymer molecules play significant roles in determining the equilibrium positions in shear-thinning fluids, despite similar bulk rheological properties. The current results are expected to be used in a wide range of applications such as cell counting and sorting.


2012 ◽  
Vol 58 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Shlomo ORGAL ◽  
Yoel ZERON ◽  
Nili ELIOR ◽  
David BIRAN ◽  
Eran FRIEDMAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document