contour length
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 4)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 206
Author(s):  
Yanshan Zhang ◽  
Yuru Tian

Image segmentation technology is dedicated to the segmentation of intensity inhomogeneous at present. In this paper, we propose a new method that incorporates fractional varying-order differential and local fitting energy to construct a new variational level set active contour model. The energy functions in this paper mainly include three parts: the local term, the regular term and the penalty term. The local term combined with fractional varying-order differential can obtain more details of the image. The regular term is used to regularize the image contour length. The penalty term is used to keep the evolution curve smooth. True positive (TP) rate, false positive (FP) rate, precision (P) rate, Jaccard similarity coefficient (JSC), and Dice similarity coefficient (DSC) are employed as the comparative measures for the segmentation results. Experimental results for both synthetic and real images show that our method has more accurate segmentation results than other models, and it is robust to intensity inhomogeneous or noises.


Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 8
Author(s):  
Vyacheslav S. Molchanov ◽  
Andrei V. Rostovtsev ◽  
Kamilla B. Shishkhanova ◽  
Alexander I. Kuklin ◽  
Olga E. Philippova

The viscoelastic properties and structure parameters have been investigated for aqueous solutions of wormlike micelles of cationic surfactant erucyl bis(hydroxyethyl) methylammonium chloride with long C22 tail in the presence inorganic salt KCl. The salt content has been varied to estimate linear to branched transition conditions due to screening of the electrostatic interaction in the networks. The local cylindrical structure and low electrostatic repulsion was obtained by SANS data. The drastic power law dependencies of rheological properties on surfactant concentrations were obtained at intermediate salt content. Two power law regions of viscosity dependence were detected in semi-dilute solutions related to “unbreakable” and “living” micellar chains. The fast contour length growth with surfactant concentration demonstrated that is in good agreement with theoretical predictions.


2021 ◽  
Vol 27 (4) ◽  
pp. 28-34
Author(s):  
N.I. Maryenko ◽  
O.Yu. Stepanenko

The purpose of the study was to develop an original modification of the Caliper method of image fractal analysis to determine the fractal dimension of linear anatomical objects. To develop the method, the linear contour of the outer surface of the cerebral cortex was chosen as the object of study. Magnetic resonance brain images in coronal projection were used. The original modification of the Caliper method includes image analysis using Adobe Photoshop CS5 software or its analogues. The linear contour of the studied object is selected, followed by stepwise smoothing of the contour with different smoothing radius. At the 1st stage of fractal analysis smoothing is not applied, at the 2nd stage the smoothing radius is 2 pixels, the 3rd – 4 pixels, the 4th – 8 pixels, the 5th – 16 pixels. At each stage, the contour length in pixels is measured (P). The size of the fractal measurement unit (G) at the 1st stage of fractal analysis is 1 pixel, the 2nd stage – 2 pixels, the 3rd stage – 4 pixels, the 4th stage – 8 pixels, the 5th stage – 16 pixels. The contour smoothing radius, the size of the fractal measurement units and the number of stages of fractal analysis can be changed depending on the characteristics of the studied structure, size, scale and image resolution. Based on the values of the perimeter and the size of the fractal measurement units, the number of fractal measurement units covering the studied object (N) is calculated: N=P/G. The fractal dimension value is calculated based on the N and G values. The modification of the Caliper method described in this paper is automatized and does not require much time required for manual calculation. In addition, compared to the classic Caliper method, this modification is more accurate because the measurement is performed automatically. The main limitation of the developed modification is the ability to determine the fractal dimension of only closed contours of studied structures or closed linear structures, because this method involves determining the length of the closed perimeter of the selected image area. The modified Caliper method of image fractal analysis described in this paper can be used in morphology and other fields of medicine for fractal analysis of linear objects: external and internal linear contours of different anatomical structures (cerebellum, cerebral hemispheres) and pathological foci (tumors, foci of necrosis, fibrosis, etc.).


Author(s):  
Vyacheslav S. Molchanov ◽  
Andrei V. Rostovtsev ◽  
Kamilla B. Shishkhanova ◽  
Alexander I. Kuklin ◽  
Olga E. Philippova

The viscoelastic properties and structure parameters have been investigated for aqueous solutions of wormlike micelles of cationic surfactant erucyl bis(hydroxyethyl) methylammonium chloride with long C22 tail in the presence inorganic salt KCl. The salt content has been varied to estimate linear to branched transition conditions due to screening of the electrostatic interaction in the networks. The local cylindrical structure and low electrostatic repulsion was obtained by SANS data. The drastic power law dependencies of rheological properties on surfactant concentrations were obtained at intermediate salt content. Two power law regions were detected in semi-dilute solutions related to “unbreakable” and “living” micellar chains. The fast contour length growth with surfactant concentration was demonstrated that is in good agreement with theoretical predictions.


The aim of this work was to apply the LINE Algorithm (Segment Extraction Algorithm) on Landsat 8 images for automatic lineament extraction in the Denguélé district. The Landsat 8 images had previously been subjected to the technique of Principal Component Analysis (PCA). After that, we implemented the LINE algorithm. Indeed, the LINE algorithm uses the following six (6) parameters : RADI (Radius of the filter) for improving the quality of the input image, GTHR (Threshold of the contour gradient), LTHR (Threshold of the contour length), FTHR (Threshold of mounting error), ATHR (Angular difference threshold between two contours ) and DTHR (Distance chaining threshold to link two contours ) for lineament discrimination. Analysis of the principal components PCA 1, PCA2 and PCA3 of bands 1, 2, 3, 4, 5 and 7 of the Landsat 8 images shows that they contain respectively 79.57; 15.88 and 2.15%, this represents overall 97.6% of all channels. 3468 lineaments were extracted. The minimum and maximum lengths of the lineaments extracted are respectively 4201.08 m and 16167.59 m and their cumulative length is 18 919 517.9 m. The lineaments average lengths are 5.55 km; 5.75 km; 5.6 km and 5.40 km respectively for NE-SW, NS, E-W and NW-SE directions. The analysis of the directions of the lineaments using a rose diagram with 10 ° of frequency, shows that the dominant directions are NE-SW (31.83% of the total lineaments), EW (28.71% of the total lineaments) and NS (27.91% of the total lineaments).


2021 ◽  
Vol 22 (21) ◽  
pp. 11732
Author(s):  
Gianfranco Cordella ◽  
Antonio Tripodo ◽  
Francesco Puosi ◽  
Dario Pisignano ◽  
Dino Leporini

Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as 0.5. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, λ∝L, up to a compressive strain of ε≃0.4 at least, depending on the film length. The onset and growth of the wrinkling under small compression are quite well described by an extended version of the familiar square-root law in the strain ε observed in macroscopic systems. Under large compression (ε≳0.25), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.


Author(s):  
Mirko Zanon ◽  
Davide Potrich ◽  
Maria Bortot ◽  
Giorgio Vallortigara

AbstractSeveral studies have suggested that vertebrate and invertebrate species may possess a number sense, i.e. an ability to process in a non-symbolic and non-verbal way the numerousness of a set of items. However, this hypothesis has been challenged by the presence of other non-numerical continuous physical variables, which vary along with numerosity (i.e., any change in the number of visual physical elements in a set naturally involves a related change in visual features such as area, density, contour length and convex hull of the stimulus). It is therefore necessary to control and manipulate the continuous physical information when investigating the ability of humans and other animals to perceive numerousness. During decades of research, different methods have been implemented in order to address this issue, which has implications for experiment replicability and inter-species comparisons, since no general standardized procedure is currently being used. Here we present the ‘Generation of Numerical Elements Images Software’ (GeNEsIS) for the creation of non-symbolic numerical arrays in a standardized and user-friendly environment. The main aim of this tool is to provide researchers in the field of numerical cognition a manageable and precise instrument to produce visual numerical arrays controlled for all the continuous variables. Additionally, we implemented the ability to actively guide stimuli presentation during habituation/dishabituation and dual-choice comparison tasks used in human and comparative research.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2577
Author(s):  
Samuele Raccosta ◽  
Fabio Librizzi ◽  
Alistair M. Jagger ◽  
Rosina Noto ◽  
Vincenzo Martorana ◽  
...  

α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers deposited onto mica and in solution reveal a power law relation between the polymer size, namely the end-to-end distance or the hydrodynamic radius, and the polymer mass, proportional to the contour length. We use the scaling concepts of polymer physics to assess that α1-antitrypsin polymers are random linear chains with a low persistence length.


2021 ◽  
Vol 22 (9) ◽  
pp. 4745
Author(s):  
Xavier Viader-Godoy ◽  
Maria Manosas ◽  
Felix Ritort

The accurate knowledge of the elastic properties of single-stranded DNA (ssDNA) is key to characterize the thermodynamics of molecular reactions that are studied by force spectroscopy methods where DNA is mechanically unfolded. Examples range from DNA hybridization, DNA ligand binding, DNA unwinding by helicases, etc. To date, ssDNA elasticity has been studied with different methods in molecules of varying sequence and contour length. A dispersion of results has been reported and the value of the persistence length has been found to be larger for shorter ssDNA molecules. We carried out pulling experiments with optical tweezers to characterize the elastic response of ssDNA over three orders of magnitude in length (60–14 k bases). By fitting the force-extension curves (FECs) to the Worm-Like Chain model we confirmed the above trend:the persistence length nearly doubles for the shortest molecule (60 b) with respect to the longest one (14 kb). We demonstrate that the observed trend is due to the different force regimes fitted for long and short molecules, which translates into two distinct elastic regimes at low and high forces. We interpret this behavior in terms of a force-induced sugar pucker conformational transition (C3′-endo to C2′-endo) upon pulling ssDNA.


2021 ◽  
Author(s):  
Mirko Zanon ◽  
Davide Potrich ◽  
Maria Bortot ◽  
Giorgio Vallortigara

AbstractSeveral studies have suggested that vertebrate and invertebrate species may possess a number sense, i.e. an ability to process in a non-symbolic and non-verbal way the numerousness of a set of items. However, this hypothesis has been challenged by the presence of other non-numerical continuous physical variables, that vary along with numerosity (e.g. any change in the number of visual physical elements in a set naturally involves a related change in visual features such as area, density, contour length and convex hull of the stimulus). It is therefore necessary to control and manipulate the continuous physical information when investigating the ability of humans and other animals to perceive numerousness. During decades of research, different methods have been implemented in order to address this issue, which has implications for experiments replicability and inter-species comparisons, since no general standardized procedure is currently being used. Here we present the “Generation of Numerical Elements Images Software” (GeNEsIS) for the creation of non-symbolic numerical arrays in a standardized and user-friendly environment. The main aim of this tool would be to provide researchers in the field of numerical cognition with a manageable and precise instrument to produce visual numerical arrays controlled for all the continuous variables; additionally, we implemented the possibility to actively guide stimuli presentation during habituation/dishabituation and dual-choice comparison tasks used in human and comparative research.


Sign in / Sign up

Export Citation Format

Share Document