The eco-efficiency assessment of wastewater treatment plants in the city of Mashhad using emergy and life cycle analyses

2020 ◽  
Vol 249 ◽  
pp. 119327 ◽  
Author(s):  
Sadegh Alizadeh ◽  
Hamid Zafari-koloukhi ◽  
Fatemeh Rostami ◽  
Masoud Rouhbakhsh ◽  
Akram Avami
Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5005
Author(s):  
Vojtěch Zejda ◽  
Vítězslav Máša ◽  
Šárka Václavková ◽  
Pavel Skryja

With increasing demands for cleaning and purification of water, wastewater treatment plants (WWTP) require their most efficient operation. The operators are thus obliged to constantly review the efficiency of the processing units and technological equipment of WWTPs and seek opportunities for improvements. To increase the efficiency of particular equipment, the important parameters to be used for the intensification must be correctly selected. A common WWTP consists of different types of processing units, where the basic parameters can be changed to achieve the highest efficiency (i.e., maximum output with minimum energy consumption) in the WWTP. However, due to many possible technologies in the wastewater treatment process, the combinations of processing units can be complex. In such cases, the efficiency assessment can be misleading if only basic parameters were accessed. Moreover, single-unit intensification can potentially improve the efficiency of the unit itself but cannot guarantee full process improvement. This can be due to negative causal effects in the downstream due to that unit intensification. This work reviews of key parameters at five selected pieces of WWTP equipment (inlet pump station, airlift pump, primary sedimentation tank, aeration chamber, and mixing of anaerobic digester) to demonstrate the correct selection of all affected parameters for the efficiency assessment. In the context of the whole WWTP process, it is necessary to take into account several other parameters to evaluate the efficiency of the equipment. Finally, a methodology for assessing the significance of the identified parameters is proposed. This methodology is effectively applied and demonstrated in the WWTP case study.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


2017 ◽  
Vol 23 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Yago Lorenzo-Toja ◽  
Ian Vázquez-Rowe ◽  
Desirée Marín-Navarro ◽  
Rosa M. Crujeiras ◽  
María Teresa Moreira ◽  
...  

2014 ◽  
Vol 16 (6) ◽  
pp. 1387-1399 ◽  
Author(s):  
Muriel M. Steele ◽  
Annick Anctil ◽  
David A. Ladner

Algaculture has the potential to be a sustainable option for nutrient removal at wastewater treatment plants.


2016 ◽  
Vol 11 (2) ◽  
pp. 266-272
Author(s):  
J. Grundestam

Stockholm is currently one of Europe’s fastest growing cities, with its population increasing by approximately 1.5% per year, corresponding to 15,000 to 20,000 people. Sweden’s commitment to the Baltic Sea Action Plan and the EU Water Directive will lead to more stringent effluent requirements (6 mg-Tot-N/l, 0.2 mg-Tot-P/l and 6 mg-BOD7/l), and wastewater treatment in Stockholm will require major investment to handle these challenges. As Stockholm Vatten’s two wastewater treatment plants (WWTPs) – Bromma, 320,000 people, and Henriksdal, 780,000 people – are both located in or near residential areas in the city, plant development must be coordinated with its needs on economic, political, sustainable and long-term bases. Both WWTPs being facilities located underground also pose a challenge for any extension works.


Sign in / Sign up

Export Citation Format

Share Document