Steel-plate composite (SC) walls: Out-of-plane flexural behavior, database, and design

2015 ◽  
Vol 108 ◽  
pp. 46-59 ◽  
Author(s):  
Kadir C. Sener ◽  
Amit H. Varma ◽  
Deniz Ayhan
2004 ◽  
Vol 88 (6) ◽  
pp. 397-402
Author(s):  
Duncan Paterson ◽  
Ben T. Yen ◽  
John W. Fisher

2015 ◽  
Vol 295 ◽  
pp. 817-828 ◽  
Author(s):  
Peter N. Booth ◽  
Amit H. Varma ◽  
Kadir C. Sener ◽  
Sanjeev R. Malushte

2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


2020 ◽  
Vol 263 ◽  
pp. 120661
Author(s):  
Amin Al-Fakih ◽  
Bashar S. Mohammed ◽  
M.M.A. Wahab ◽  
M.S. Liew ◽  
Y.H. Mugahed Amran

Various numerical models of diagonally stiffened steel plate shear wall were tested under push-over loads to study the required stiffness of columns of diagonally stiffened SPSWs. This research presents a parametric study to explore the influence of varying the infill panel’s thickness, width, and height and the number of floors on the stiffness of the edge columns, and to propose expressions to predict the column’s in-plane stiffness and area required for preliminary design. Different SPSWs were modeled with a range of several stories, an aspect ratio, and height to thickness ratio, respectively, of (n=3-7), (Lp /hp=1-2), and (λ=200-400). The results indicated that the number of floors (n) has a great effect on the wall’s shear capacity. A greater number of floors lead to buckling in columns and early failure of the system, and subsequently, an increase in the column’s rigidity is required. Moreover, an equation is proposed to calculate the value of ωh required for sufficient inertia of the column. Higher the drift is, lower the shear capacity of the wall is, particularly for walls with a larger aspect ratio (Lp /hp > 1.5), and smaller height to thickness ratio (λ < 400). It is proposed that the columns’ out-of-plane stiffness divided by its in-plane stiffness to be equal or greater than 0.4. An equation is also proposed to predict the required columns’ rx substantial to assure that the columns can resist the impact of the tension field and the plate achieves full yield strength.


Author(s):  
R. Sundaravadivelu ◽  
P. Alagusundaramoorthy ◽  
M. Suneel Kumar ◽  
S. Rahima Shabeen

The weight of glass fiber reinforced polymer composite (GFRP) plate is about one fourth of the steel plate and can be used in ship and offshore structures, so that the payload can be increased. However comparative studies on the behaviour of steel and GFRP composite plates with square opening have not been studied in detail. The experimental studies on steel and GFRP plates with and without openings are carried out for the combined loading of axial compression and out-of-plane loads. The in-plane and out-of-plane deflections are measured. The reduction in the axial load carrying capacity of the plates due to out-of-plane load is quantified. The effect of column slenderness ratio and plate slenderness ratio on the collapse load of simply supported stiffened plates is presented. Two sets of interaction equations are developed, one for the steel plate and another for the GFRP composite plate.


Sign in / Sign up

Export Citation Format

Share Document