Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments

2014 ◽  
Vol 269 ◽  
pp. 240-249 ◽  
Author(s):  
Amit H. Varma ◽  
Sanjeev R. Malushte ◽  
Kadir C. Sener ◽  
Zhichao Lai
2004 ◽  
Vol 88 (6) ◽  
pp. 397-402
Author(s):  
Duncan Paterson ◽  
Ben T. Yen ◽  
John W. Fisher

Various numerical models of diagonally stiffened steel plate shear wall were tested under push-over loads to study the required stiffness of columns of diagonally stiffened SPSWs. This research presents a parametric study to explore the influence of varying the infill panel’s thickness, width, and height and the number of floors on the stiffness of the edge columns, and to propose expressions to predict the column’s in-plane stiffness and area required for preliminary design. Different SPSWs were modeled with a range of several stories, an aspect ratio, and height to thickness ratio, respectively, of (n=3-7), (Lp /hp=1-2), and (λ=200-400). The results indicated that the number of floors (n) has a great effect on the wall’s shear capacity. A greater number of floors lead to buckling in columns and early failure of the system, and subsequently, an increase in the column’s rigidity is required. Moreover, an equation is proposed to calculate the value of ωh required for sufficient inertia of the column. Higher the drift is, lower the shear capacity of the wall is, particularly for walls with a larger aspect ratio (Lp /hp > 1.5), and smaller height to thickness ratio (λ < 400). It is proposed that the columns’ out-of-plane stiffness divided by its in-plane stiffness to be equal or greater than 0.4. An equation is also proposed to predict the required columns’ rx substantial to assure that the columns can resist the impact of the tension field and the plate achieves full yield strength.


Author(s):  
R. Sundaravadivelu ◽  
P. Alagusundaramoorthy ◽  
M. Suneel Kumar ◽  
S. Rahima Shabeen

The weight of glass fiber reinforced polymer composite (GFRP) plate is about one fourth of the steel plate and can be used in ship and offshore structures, so that the payload can be increased. However comparative studies on the behaviour of steel and GFRP composite plates with square opening have not been studied in detail. The experimental studies on steel and GFRP plates with and without openings are carried out for the combined loading of axial compression and out-of-plane loads. The in-plane and out-of-plane deflections are measured. The reduction in the axial load carrying capacity of the plates due to out-of-plane load is quantified. The effect of column slenderness ratio and plate slenderness ratio on the collapse load of simply supported stiffened plates is presented. Two sets of interaction equations are developed, one for the steel plate and another for the GFRP composite plate.


Author(s):  
Saahastaranshu R. Bhardwaj ◽  
Amit H. Varma ◽  
Taha Al-Shawaf

Appendix N9 to AISC N690s1 presents the design provisions for steel-plate composite (SC) walls in safety related nuclear facilities. AISC N690s1 is Supplement No. 1 to AISC N690-12 specification for safety related steel structures in nuclear facilities and was published in October 2015. This paper discusses the outline of Appendix N9 as well as how the appendix can be used for the design of SC wall structures. Appendix N9 establishes the minimum requirements that SC walls need to meet in order for the specification to be applicable. The requirements include minimum and maximum wall thickness and steel reinforcement ratio. Detailing requirements for SC wall panel sections are also discussed. The faceplate slenderness requirement to prevent the limit state of buckling before yielding is provided. Steel anchor requirements are based on developing adequate composite action, and preventing interfacial shear failure. Requirements for tie bars connecting the steel plates (faceplates) are provided to prevent splitting failure and out-of-plane shear failure. The detailing and design provisions for regions around openings in SC walls are also included. Appendix N9 provides a method of checking the design of SC walls for impactive and impulsive loads. A discussion of the analysis requirements for SC walls is presented. The provisions include effective stiffnesses, accident thermal loading and model parameters for analysis. The design strength equations for axial tension, axial compression, out-of-plane shear, out-of-plane flexure, in-plane shear, and for combined in-plane forces and out-of-plane moment demands are parts of the provisions of the appendix. The provisions also include interaction equations for evaluating tie bars resisting demands due to combination of out-of-plane and interfacial shear forces. Performance requirements for the anchorage of SC walls to concrete basemat, SC wall-to-wall connections and SC walls to floor slab connections are given in the appendix. The provisions also include requirements for fabrication, inspection, and quality control of SC walls constructed for safety-related nuclear facilities.


Author(s):  
Sinjaya Tan ◽  
Jamshaid Sawab ◽  
Mo Li ◽  
Y. L. Mo ◽  
Feng Qin

Cross ties have been widely used in Steel plate Concrete (SC) structures. It is considered as one of the most effective methods in ensuring the integrity of the SC module when subjected to both flexure and out-of-plane shear. Although there are no specific guidelines for the design of cross ties as shear reinforcement in the current practice, the requirements for reinforced concrete structures specified in ACI 349 has been generally adopted in design. The experimental studies completed at the University of Houston show that a minimum amount of cross ties is required for the SC structures to preserve shear ductility. This amount was found to be greater than the ACI 349 recommendations. In addition, the strength of SC beams could not be predicted by the ACI 349 code. This paper evaluates the applicability of the present shear design methods of reinforced concrete beams to steel plate concrete beams and proposes a set of shear design equations.


Author(s):  
Guochang Li ◽  
Zengmei Qiu ◽  
Zhijian Yang

This paper mainly researched the behavior of double fish plate connector between steel plate shear wall structure and steel frame. Four single fish plate connectors and four double fish plate connectors were tested under monotonic and cyclic loading. The hysteretic curves, skeleton curves, stiffness degradation curve and ductility coefficient were considered to study the behavior of two connections. Results showed that the behavior of double fish plate connector between steel plate shear walls and steel frame was better than single fish plate connector. Double fish plate connectors had higher bearing capacity, slower stiffness degradation, better ductility and better energy dissipation capacity. Constraint effect of steel plate shear walls became stronger, and the out-of-plane buckling failure of steel plate shear walls was delayed. Therefore, the double fish plate connectors could improve the behavior of connection between steel plate shear walls and steel frame, and provide a reference for engineering application


Author(s):  
C. Bonnet ◽  
P. Potier ◽  
B. Morris Ashton

The Dounreay site, in North Scotland, was opened in 1955 and a wide range of nuclear facilities have been built and operated there by UKAEA (The United Kingdom Atomic Energy Authority) for the development of atomic energy research. The Dounreay Fast Reactor (DFR) was built between 1955 and 1957, and operated until 1977 for demonstration purposes and for producing electricity. Today, its decommissioning is a key part of the whole Dounreay Site Restoration Plan that integrates the major decommissioning activities such as the fuel treatment and the waste management. The paper presents the contract strategy and provides an overview of the BFR project which consists in the removal of the breeder elements from the reactor and their further treatment. It mainly provides particular details of the Retrieval and Processing Facilities design.


Sign in / Sign up

Export Citation Format

Share Document