scholarly journals Corrigendum to “Smooth zero-contact-angle solutions to a thin-film equation around the steady state” [J. Differential Equations 245 (2008) 1454–1506]

2016 ◽  
Vol 261 (2) ◽  
pp. 1622-1635 ◽  
Author(s):  
Björn Bringmann ◽  
Lorenzo Giacomelli ◽  
Hans Knüpfer ◽  
Felix Otto
2008 ◽  
Vol 245 (6) ◽  
pp. 1454-1506 ◽  
Author(s):  
Lorenzo Giacomelli ◽  
Hans Knüpfer ◽  
Felix Otto

2001 ◽  
Vol 12 (2) ◽  
pp. 135-157 ◽  
Author(s):  
M. BOWEN ◽  
J. R. KING

We investigate the extinction behaviour of a fourth order degenerate diffusion equation in a bounded domain, the model representing the flow of a viscous fluid over edges at which zero contact angle conditions hold. The extinction time may be finite or infinite and we distinguish between the two cases by identification of appropriate similarity solutions. In certain cases, an unphysical mass increase may occur for early time and the solution may become negative; an appropriate remedy for this is noted. Numerical simulations supporting the analysis are included.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
A. J. Hutchinson ◽  
C. Harley ◽  
E. Momoniat

A third-order ordinary differential equation with application in the flow of a thin liquid film is considered. The boundary conditions come from Tanner's problem for the surface tension driven flow of a thin film. Symmetric and nonsymmetric finite difference schemes are implemented in order to obtain steady state solutions. We show that a central difference approximation to the third derivative in the model equation produces a solution curve with oscillations. A difference scheme based on a combination of forward and backward differences produces a smooth accurate solution curve. The stability of these schemes is analysed through the use of a von Neumann stability analysis.


2013 ◽  
Vol 24 (5) ◽  
pp. 735-760 ◽  
Author(s):  
LORENZO GIACOMELLI ◽  
MANUEL V. GNANN ◽  
FELIX OTTO

In one space dimension, we consider source-type (self-similar) solutions to the thin-film equation with vanishing slope at the edge of their support (zero contact-angle condition) in the range of mobility exponents $n\in\left(\frac 3 2,3\right)$. This range contains the physically relevant case n=2 (Navier slip). The existence and (up to a spatial scaling) uniqueness of these solutions has been established in [3] (Bernis, F., Peletier, L. A. & Williams, S. M. (1992) Source type solutions of a fourth-order nonlinear degenerate parabolic equation. Nonlinear Anal. 18, 217–234). It is also shown there that the leading-order expansion near the edge of the support coincides with that of a travelling-wave solution. In this paper we substantially sharpen this result, proving that the higher order correction is analytic with respect to two variables: the first one is just the spatial variable whereas the second one is a (generically irrational, in particular for n=2) power of it, which naturally emerges from a linearisation of the operator around the travelling-wave solution. This result shows that – as opposed to the case of n=1 (Darcy) or to the case of the porous medium equation (the second-order analogue of the thin-film equation) – in this range of mobility exponents, source-type solutions are not smooth at the edge of their support even when the behaviour of the travelling wave is factored off. We expect the same singular behaviour for a generic solution to the thin-film equation near its moving contact line. As a consequence, we expect a (short-time or small-data) well-posedness theory – of which this paper is a natural prerequisite – to be more involved than in the case n=1.


2004 ◽  
Vol 15 (3) ◽  
pp. 329-346 ◽  
Author(s):  
JAN BOUWE VAN DEN BERG ◽  
MARK BOWEN ◽  
JOHN R. KING ◽  
M. M. A. EL-SHEIKH

We investigate self-similar solutions of the thin film equation in the case of zero contact angle boundary conditions on a finite domain. We prove existence and uniqueness of such a solution and determine the asymptotic behaviour as the exponent in the equation approaches the critical value at which zero contact angle boundary conditions become untenable. Numerical and power-series solutions are also presented.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2011 ◽  
Vol 60 (2) ◽  
pp. 137-148
Author(s):  
Igor Korotyeyev ◽  
Beata Zięba

Steady-state modelling method for matrix-reactance frequency converter with boost topologyThis paper presents a method intended for calculation of steady-state processes in AC/AC three-phase converters that are described by nonstationary periodical differential equations. The method is based on the extension of nonstationary differential equations and the use of Galerkin's method. The results of calculations are presented in the form of a double Fourier series. As an example, a three-phase matrix-reactance frequency converter (MRFC) with boost topology is considered and the results of computation are compared with a numerical method.


Author(s):  
Konstantinos Dareiotis ◽  
Benjamin Gess ◽  
Manuel V. Gnann ◽  
Günther Grün

AbstractWe prove the existence of non-negative martingale solutions to a class of stochastic degenerate-parabolic fourth-order PDEs arising in surface-tension driven thin-film flow influenced by thermal noise. The construction applies to a range of mobilites including the cubic one which occurs under the assumption of a no-slip condition at the liquid-solid interface. Since their introduction more than 15 years ago, by Davidovitch, Moro, and Stone and by Grün, Mecke, and Rauscher, the existence of solutions to stochastic thin-film equations for cubic mobilities has been an open problem, even in the case of sufficiently regular noise. Our proof of global-in-time solutions relies on a careful combination of entropy and energy estimates in conjunction with a tailor-made approximation procedure to control the formation of shocks caused by the nonlinear stochastic scalar conservation law structure of the noise.


Sign in / Sign up

Export Citation Format

Share Document