Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4

2019 ◽  
Vol 267 (12) ◽  
pp. 7369-7384 ◽  
Author(s):  
Xianbo Sun ◽  
Pei Yu
2013 ◽  
Vol 23 (08) ◽  
pp. 1350137
Author(s):  
YI SHAO ◽  
A. CHUNXIANG

This paper is concerned with the bifurcation of limit cycles of a class of quadratic reversible Lotka–Volterra system [Formula: see text] with b = -1/3. By using the Chebyshev criterion to study the number of zeros of Abelian integrals, we prove that this system has at most two limit cycles produced from the period annulus around the center under quadratic perturbations, which provide a positive answer for a case of the conjecture proposed by S. Gautier et al.


2014 ◽  
Vol 228 ◽  
pp. 329-335 ◽  
Author(s):  
Juanjuan Wu ◽  
Yongkang Zhang ◽  
Cuiping Li

2010 ◽  
Vol 181 (2) ◽  
pp. 227-289 ◽  
Author(s):  
Gal Binyamini ◽  
Dmitry Novikov ◽  
Sergei Yakovenko

2007 ◽  
Vol 17 (09) ◽  
pp. 3281-3287
Author(s):  
TONGHUA ZHANG ◽  
YU-CHU TIAN ◽  
MOSES O. TADÉ

Addressing the weakened Hilbert's 16th problem or the Hilbert–Arnold problem, this paper gives an upper bound B(n) ≤ 7n + 5 for the number of zeros of the Abelian integrals for a class of Liénard systems. We proved the main result using the Picard–Fuchs equations and the algebraic structure of the integrals.


Nonlinearity ◽  
2012 ◽  
Vol 25 (6) ◽  
pp. 1931-1946 ◽  
Author(s):  
Gal Binyamini ◽  
Gal Dor

Sign in / Sign up

Export Citation Format

Share Document