ON THE NUMBER OF ZEROS OF THE ABELIAN INTEGRALS FOR A CLASS OF PERTURBED LIÉNARD SYSTEMS
2007 ◽
Vol 17
(09)
◽
pp. 3281-3287
Keyword(s):
Addressing the weakened Hilbert's 16th problem or the Hilbert–Arnold problem, this paper gives an upper bound B(n) ≤ 7n + 5 for the number of zeros of the Abelian integrals for a class of Liénard systems. We proved the main result using the Picard–Fuchs equations and the algebraic structure of the integrals.
2013 ◽
Vol 23
(07)
◽
pp. 1350116
◽
2004 ◽
Vol 14
(07)
◽
pp. 2449-2456
◽
Keyword(s):
2013 ◽
Vol 23
(03)
◽
pp. 1350047
◽
2004 ◽
Vol 14
(05)
◽
pp. 1853-1862
◽
Keyword(s):
2011 ◽
Vol 21
(09)
◽
pp. 2723-2727
◽
Keyword(s):
2013 ◽
Vol 23
(08)
◽
pp. 1350137
Keyword(s):
2008 ◽
Vol 244
(6)
◽
pp. 1359-1394
◽