Intracellular oxidative stress induced by calcium influx initiates the activation of phagocytosis in keratinocytes accumulating at S-phase of the cell cycle after UVB irradiation

Author(s):  
Yushi Katsuyama ◽  
Yuki Sato ◽  
Yuri Okano ◽  
Hitoshi Masaki
mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Shin-ya Miyagishima ◽  
Atsuko Era ◽  
Tomohisa Hasunuma ◽  
Mami Matsuda ◽  
Shunsuke Hirooka ◽  
...  

ABSTRACTThe transition from G1to S phase and subsequent nuclear DNA replication in the cells of many species of eukaryotic algae occur predominantly during the evening and night in the absence of photosynthesis; however, little is known about how day/night changes in energy metabolism and cell cycle progression are coordinated and about the advantage conferred by the restriction of S phase to the night. Using a synchronous culture of the unicellular red algaCyanidioschyzon merolae, we found that the levels of photosynthetic and respiratory activities peak during the morning and then decrease toward the evening and night, whereas the pathways for anaerobic consumption of pyruvate, produced by glycolysis, are upregulated during the evening and night as reported recently in the green algaChlamydomonas reinhardtii. Inhibition of photosynthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) largely reduced respiratory activity and the amplitude of the day/night rhythm of respiration, suggesting that the respiratory rhythm depends largely on photosynthetic activity. Even when the timing of G1/S-phase transition was uncoupled from the day/night rhythm by depletion of retinoblastoma-related (RBR) protein, the same patterns of photosynthesis and respiration were observed, suggesting that cell cycle progression and energy metabolism are regulated independently. Progression of the S phase under conditions of photosynthesis elevated the frequency of nuclear DNA double-strand breaks (DSB). These results suggest that the temporal separation of oxygenic energy metabolism, which causes oxidative stress, from nuclear DNA replication reduces the risk of DSB during cell proliferation inC. merolae.IMPORTANCEEukaryotes acquired chloroplasts through an endosymbiotic event in which a cyanobacterium or a unicellular eukaryotic alga was integrated into a previously nonphotosynthetic eukaryotic cell. Photosynthesis by chloroplasts enabled algae to expand their habitats and led to further evolution of land plants. However, photosynthesis causes greater oxidative stress than mitochondrion-based respiration. In seed plants, cell division is restricted to nonphotosynthetic meristematic tissues and populations of photosynthetic cells expand without cell division. Thus, seemingly, photosynthesis is spatially sequestrated from cell proliferation. In contrast, eukaryotic algae possess photosynthetic chloroplasts throughout their life cycle. Here we show that oxygenic energy conversion (daytime) and nuclear DNA replication (night time) are temporally sequestrated inC. merolae. This sequestration enables “safe” proliferation of cells and allows coexistence of chloroplasts and the eukaryotic host cell, as shown in yeast, where mitochondrial respiration and nuclear DNA replication are temporally sequestrated to reduce the mutation rate.


2004 ◽  
Vol 15 (12) ◽  
pp. 5659-5669 ◽  
Author(s):  
Michael Shapira ◽  
Eran Segal ◽  
David Botstein

The effects of oxidative stress on yeast cell cycle depend on the stress-exerting agent. We studied the effects of two oxidative stress agents, hydrogen peroxide (HP) and the superoxide-generating agent menadione (MD). We found that two small coexpressed groups of genes regulated by the Mcm1-Fkh2-Ndd1 transcription regulatory complex are sufficient to account for the difference in the effects of HP and MD on the progress of the cell cycle, namely, G1 arrest with MD and an S phase delay followed by a G2/M arrest with HP. Support for this hypothesis is provided by fkh1fkh2 double mutants, which are affected by MD as we find HP affects wild-type cells. The apparent involvement of a forkhead protein in HP-induced cell cycle arrest, similar to that reported for Caenorhabditis elegans and human, describes a potentially novel stress response pathway in yeast.


2018 ◽  
Vol 17 (9) ◽  
pp. 689-695 ◽  
Author(s):  
Nidhi Khatri ◽  
Manisha Thakur ◽  
Vikas Pareek ◽  
Sandeep Kumar ◽  
Sunil Sharma ◽  
...  

Background & Objective: Traumatic Brain Injury (TBI) is one of the major causes of mortality and morbidity worldwide. It represents mild, moderate and severe effects of physical assault to brain which may cause sequential, primary or secondary ramifications. Primary injury can be due to the first physical hit, blow or jolt to one of the brain compartments. The primary injury is then followed by secondary injury which leads to biochemical, cellular, and physiological changes like blood brain barrier disruption, inflammation, excitotoxicity, necrosis, apoptosis, mitochondrial dysfunction and generation of oxidative stress. Apart from this, there is also an immediate increase in glutamate at the synapses following severe TBI. Excessive glutamate at synapses in turn activates corresponding NMDA and AMPA receptors that facilitate excessive calcium influx into the neuronal cells. This leads to the generation of oxidative stress which further leads to mitochondrial dysfunction, lipid peroxidation and oxidation of proteins and DNA. As a consequence, neuronal cell death takes place and ultimately people start facing some serious disabilies. Conclusion: In the present review we provide extensive overview of the role of reactive oxygen species (ROS)-induced oxidative stress and its fatal effects on brain after TBI.


2020 ◽  
Vol 01 ◽  
Author(s):  
Ayşe Mine Yılmaz ◽  
Gökhan Biçim ◽  
Kübra Toprak ◽  
Betül Karademir Yılmaz ◽  
Irina Milisav ◽  
...  

Background: Different cellular responses influence the progress of cancer. In this study, we have investigated the effect of hydrogen peroxide and quercetin induced changes on cell viability, apoptosis and oxidative stress in human hepatocellular carcinoma (HepG2) cells. Methods: The effects of hydrogen peroxide and quercetin on cell viability, cell cycle phases and oxidative stress related cellular changes were investigated. Cell viability was assessed by WST-1 assay. Apoptosis rate, cell cycle phase changes and oxidative stress were measured by flow cytometry. Protein expressions of p21, p27, p53, NF-Kβ-p50 and proteasome activity were determined by Western blot and fluorometry, respectively. Results: Hydrogen peroxide and quercetin treatment resulted in decreased cell viability and increased apoptosis in HepG2 cells. Proteasome activity was increased by hydrogen peroxide but decreased by quercetin treatment. Conclusion: Both agents resulted in decreased p53 protein expression and increased cell death by different mechanisms regarding proteostasis and cell cycle phases.


2001 ◽  
Vol 59 (s78) ◽  
pp. 120-123 ◽  
Author(s):  
Jan Galle ◽  
Alexandra Heinloth ◽  
Christoph Wanner ◽  
Kathrin Heermeier

2019 ◽  
Vol 21 (10) ◽  
pp. 1297-1309 ◽  
Author(s):  
Denise D Correa ◽  
Jaya Satagopan ◽  
Axel Martin ◽  
Erica Braun ◽  
Maria Kryza-Lacombe ◽  
...  

AbstractBackgroundPatients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer’s disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population.MethodsOne hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood–brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs.ResultsMultivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities.ConclusionThis novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors.


Sign in / Sign up

Export Citation Format

Share Document