South American homogeneity versus Caribbean heterogeneity: population genetic structure of the western Atlantic fiddler crab Uca rapax (Brachyura, Ocypodidae)

2013 ◽  
Vol 449 ◽  
pp. 22-27 ◽  
Author(s):  
Claudia Laurenzano ◽  
Fernando L.M. Mantelatto ◽  
Christoph D. Schubart
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexis B. Sturm ◽  
Ryan J. Eckert ◽  
Juliett González Méndez ◽  
Patricia González-Díaz ◽  
Joshua D. Voss

Abstract Coral reef habitats surrounding Cuba include relatively healthy, well-developed shallow and mesophotic (30–150 m) scleractinian communities at the cross-currents of the Tropical Western Atlantic (TWA). However, Cuba’s coral communities are not immune to the declines observed throughout the TWA, and there is limited information available regarding genetic connectivity, diversity, and structure among these populations. This represents an immense gap in our understanding of coral ecology and population dynamics at both local and regional scales. To address this gap, we evaluated the population genetic structure of the coral Montastraea cavernosa across eight reef sites surrounding Cuba. Colonies were genotyped using nine microsatellite markers and > 9,000 single nucleotide polymorphism (SNP) markers generated using the 2bRAD approach to assess fine-scale genetic structure across these sites. Both the microsatellite and SNP analyses identified patterns of genetic differentiation among sample populations. While the microsatellite analyses did not identify significant genetic structure across the seven shallow M. cavernosa sampling sites, the SNP analyses revealed significant pairwise population differentiation, suggesting that differentiation is greater between eastern and western sites. This study provides insight into methodological differences between microsatellite and SNP markers including potential trade-offs between marker-specific biases, sample size, sequencing costs, and the ability to resolve subtle patterns of population genetic structure. Furthermore, this study suggests that locations in western Cuba may play important roles in this species’ regional metapopulation dynamics and therefore may merit incorporation into developing international management efforts in addition to the local management the sites receive.


2021 ◽  
Author(s):  
Garrett M Janzen ◽  
María Rocío Aguilar-Rangel ◽  
Carolina Cíntora-Martínez ◽  
Karla Azucena Blöcher-Juárez ◽  
Eric González-Segovia ◽  
...  

Populations are locally adapted when they exhibit higher fitness than foreign populations in their native habitat. Maize landrace adaptations to highland and lowland conditions are of interest to researchers and breeders. To determine the prevalence and strength of local adaptation in maize landraces, we performed a reciprocal transplant experiment across an elevational gradient in Mexico. We grew 120 landraces, grouped into four populations (Mexican Highland, Mexican Lowland, South American Highland, South American Lowland), in Mexican highland and lowland common gardens and collected phenotypes relevant to fitness, as well as reported highland-adaptive traits such as anthocyanin pigmentation and macrohair density. 67k DArTseq markers were generated from field specimens to allow comparison between phenotypic patterns and population genetic structure. We found phenotypic patterns consistent with local adaptation, though these patterns differ between the Mexican and South American populations. While population genetic structure largely recapitulates drift during post-domestication dispersal, landrace phenotypes reflect adaptations to native elevation. Quantitative trait QST was greater than neutral FST for many traits, signaling divergent directional selection between pairs of populations. All populations exhibited higher fitness metric values when grown at their native elevation, and Mexican landraces had higher fitness than South American landraces when grown in our Mexican sites. Highland populations expressed generally higher anthocyanin pigmentation than lowland populations, and more so in the highland site than in the lowland site. Macrohair density was largely non-plastic, and Mexican landraces and highland landraces were generally more pilose. Analysis of δ13C indicated that lowland populations may have lower WUE. Each population demonstrated garden-specific correlations between highland trait expression and fitness, with stronger positive correlations in the highland site. These results give substance to the long-held presumption of local adaptation of New World maize landraces to elevation and other environmental variables across North and South America.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4173 ◽  
Author(s):  
Cristian B. Canales-Aguirre ◽  
Sandra Ferrada-Fuentes ◽  
Ricardo Galleguillos ◽  
Fernanda X. Oyarzun ◽  
Cristián E. Hernández

Previous studies of population genetic structure inDissostichus eleginoideshave shown that oceanographic and geographic discontinuities drive in this species population differentiation. Studies have focused on the genetics ofD.eleginoidesin the Southern Ocean; however, there is little knowledge of their genetic variation along the South American continental shelf. In this study, we used a panel of six microsatellites to test whetherD.eleginoidesshows population genetic structuring in this region. We hypothesized that this species would show zero or very limited genetic structuring due to the habitat continuity along the South American shelf from Peru in the Pacific Ocean to the Falkland Islands in the Atlantic Ocean. We used Bayesian and traditional analyses to evaluate population genetic structure, and we estimated the number of putative migrants and effective population size. Consistent with our predictions, our results showed no significant genetic structuring among populations of the South American continental shelf but supported two significant and well-defined genetic clusters ofD.eleginoidesbetween regions (South American continental shelf and South Georgia clusters). Genetic connectivity between these two clusters was 11.3% of putative migrants from the South American cluster to the South Georgia Island and 0.7% in the opposite direction. Effective population size was higher in locations from the South American continental shelf as compared with the South Georgia Island. Overall, our results support that the continuity of the deep-sea habitat along the continental shelf and the biological features of the study species are plausible drivers of intraspecific population genetic structuring across the distribution ofD.eleginoideson the South American continental shelf.


2015 ◽  
Vol 50 (3) ◽  
pp. 453-464 ◽  
Author(s):  
Luis A Pastene ◽  
Jorge Acevedo ◽  
Salvatore Siciliano ◽  
Thais G.C Sholl ◽  
Jailson F de Moura ◽  
...  

Author(s):  
Andrea M Bernard ◽  
Matthew W Johnston ◽  
Rocío Pérez-Portela ◽  
Marjorie F Oleksiak ◽  
Felicia C Coleman ◽  
...  

Abstract Understanding the connectivity of reef organisms is important to assist in the conservation of biological diversity and to facilitate sustainable fisheries in these ecosystems. Common methods to assess reef connectivity include both population genetics and biophysical modelling. Individually, these techniques can offer insight into population structure; however, the information acquired by any singular analysis is often subject to limitations, underscoring the need for a multi-faceted approach. To assess the connectivity dynamics of the red grouper (Epinephelus morio), an economically important reef fish species found throughout the Gulf of Mexico and USA western Atlantic, we utilized two sets of genetic markers (12 microsatellite loci and 632 single nucleotide polymorphisms) to resolve this species’ population genetic structure, along with biophysical modelling to deliver a spatial forecast of potential larval “sources” and “sinks” across these same regions and spatial scale. Our genetic survey indicates little, if any, evidence of population genetic structure and modelling efforts indicate the potential for ecological connectivity between sampled regions over multiple generations. We offer that using a dual empirical and theoretical approach lessens the error associated with the use of any single method and provides an important step towards the validation of either of these methodologies.


2015 ◽  
Vol 31 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Luana Alves Rodrigues ◽  
Eduardo Augusto Ruas ◽  
Paulo Maurício Ruas ◽  
Maikel Reck ◽  
Fernando Gianetti Fiorin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document