Numerical simulation of solid–liquid food mixture in a high pressure processing unit using computational fluid dynamics

2007 ◽  
Vol 80 (4) ◽  
pp. 1031-1042 ◽  
Author(s):  
A.G. Abdul Ghani ◽  
M.M. Farid
Author(s):  
S. A. Abdelfattah ◽  
M. T. Schobeiri

This paper describes experimental and numerical investigations of a three-stage high pressure research turbine which incorporates fully 3-D bowed blades at various operating conditions. Experimental data were obtained using interstage aerodynamic measurements at three measurement stations, namely, downstream of the first rotor row, the second stator row and the second rotor row. Measurements were conducted through the use of five-hole probes traversed in both circumferential and radial directions to create a measurement window. Aerodynamics measurements were carried out within a rotational speed range of 1800 to 2800 RPM. Numerical simulation of the aforementioned turbine was performed through the use of a commercial computational fluid dynamics code. A detailed mesh of the three-stages was created and used to simulate the corresponding operating conditions and a comparison was made between experimentally and numerically determined aerodynamics and turbine performance.


2017 ◽  
Vol 10 (8) ◽  
pp. 3145-3165 ◽  
Author(s):  
Chiel C. van Heerwaarden ◽  
Bart J. H. van Stratum ◽  
Thijs Heus ◽  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
...  

Abstract. This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.


2017 ◽  
Author(s):  
Chiel C. van Heerwaarden ◽  
Bart J. H. van Stratum ◽  
Thijs Heus ◽  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
...  

Abstract. This paper describes MicroHH 1.0, a new and open source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation, but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parametrizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parametrizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximation, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32,768 processes. The Graphical Processing Unit-enabled version of the code reaches speedups of more than an order of magnitude with respect to the conventional code for a variety of cases.


Sign in / Sign up

Export Citation Format

Share Document