Loss of elemental Mg during wire + arc additive manufacturing of Al-Mg alloy and its effect on mechanical properties

2020 ◽  
Vol 49 ◽  
pp. 456-462 ◽  
Author(s):  
Tao Yuan ◽  
Zhanliang Yu ◽  
Shujun Chen ◽  
Min Xu ◽  
Xiaoqing Jiang
2018 ◽  
Vol 233 ◽  
pp. 00031 ◽  
Author(s):  
Bianca F. Gomes ◽  
Paulo J. Morais ◽  
Vítor Ferreira ◽  
Margarida Pinto ◽  
Luiz H. de Almeida

Among the several metallic additive manufacturing (MAM) technologies available, the wire-and-arc based ones are very beneficial due to the lower operational costs, higher efficiency use of raw materials, and high deposition rates achieved. The Cold Metal Transfer (CMT) process stands out by the lower heat input compared to the other wire-and-arc based methods. On the other hand, processes such as Pulse Multi Control (PMC) and its variants have not been tested yet in additive manufacturing and for this reason they should be evaluated. Therefore, considering the technologies potential and the need of automotive and aeronautical industry of manufacturing parts of complex and optimized geometry in a faster way, the study of these technologies is very relevant. Thus, the objective of this paper is the additive manufacturing of walls with Al-Mg alloy using CMT, CMT-Pulse, PMC, PMC-Mix, and MIG-Pulse, and the evaluation of the hardness, mechanical strength, and porosity of the manufactured parts aiming future industrial applications. The results showed good mechanical properties, small pore fraction, and geometric uniformity of parts produced with PMC and PMC-Mix. MIG-Pulse and PMC parts presented the smaller pore fraction among the GMAW variants, although no difference was noticed in the mechanical properties of the parts.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 320
Author(s):  
Lingling Ren ◽  
Huimin Gu ◽  
Wei Wang ◽  
Shuai Wang ◽  
Chengde Li ◽  
...  

Al-Mg alloys can reach medium strength without a solid solution and quenching treatment, thereby avoiding product distortion caused by quenching, which has attracted the attention of wire arc additive manufacturing (WAAM) researchers. However, the mechanical properties of the WAAM Al-Mg alloy deposits obtained so far are poor. Herein, we describe the preparation of Al-Mg-0.3Sc alloy deposits by WAAM and detail the pores, microstructure, and mechanical properties of the alloy produced in this manner. The results showed that the number and sizes of the pores in WAAM Al-Mg-0.3Sc alloy deposits were equivalent to those in Al-Mg alloy deposits without Sc. The rapid cooling characteristics of the WAAM process make the precipitation morphology, size, and distribution of the primary and secondary Al3Sc phases unique and effectively improve the mechanical properties of the deposit. A primary Al3Sc phase less than 3 μm in size was found to precipitate from the WAAM Al-Mg-0.3Sc alloy deposits. The primary Al3Sc phase refines grains, changes the segregated β(Mg2Al3) phase morphology, and ensures that the mechanical properties of horizontal and vertical samples of the deposits are uniform. After heat treatment at 350 °C for 1 h, the WAAM Al-Mg-0.3Sc alloy deposits precipitated a secondary Al3Sc phase, which was spherical (diameter about 20 nm) and had high dispersity. This phase blocks dislocations and subgrain boundaries, causes a noticeable strengthening effect, and further improves the mechanical properties of the deposits, up to a horizontal samples tensile strength of 415 MPa, a yield strength of 279 MPa, and an elongation of 18.5%, a vertical samples tensile strength of 411 MPa, a yield strength of 279 MPa, and an elongation of 14.5%. This Al-Mg-Sc alloy is expected to be widely used in the WAAM field.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 513
Author(s):  
Jae Won Kim ◽  
Jae-Deuk Kim ◽  
Jooyoung Cheon ◽  
Changwook Ji

This study observed the effect of filler metal type on mechanical properties of NAB (NiAl-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology. The selection of filler metal type is must consider the field condition, mechanical properties required by customers, and economics. This study analyzed the bead shape for representative two kind of filler metal types use to maintenance and fabricated a two-dimensional bulk NAB material. The cold metal transfer (CMT) mode of gas metal arc welding (GMAW) was used. For a comparison of mechanical properties, the study obtained three specimens per welding direction from the fabricated bulk NAB material. In the tensile test, the NAB material deposited using filler metal wire A showed higher tensile strength and lower elongation (approx. +71 MPa yield strength, +107.1 MPa ultimate tensile strength, −12.4% elongation) than that deposited with filler metal wire B. The reason is that, a mixture of tangled fine α platelets and dense lamellar eutectoid α + κIII structure with β´ phases was observed in the wall made with filler metal wire A. On the other hand, the wall made with filler metal wire B was dominated by coarse α phases and lamellar eutectoid α + κIII structure in between.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1610 ◽  
Author(s):  
Paulo J. Morais ◽  
Bianca Gomes ◽  
Pedro Santos ◽  
Manuel Gomes ◽  
Rudolf Gradinger ◽  
...  

Ever-increasing demands of industrial manufacturing regarding mechanical properties require the development of novel alloys designed towards the respective manufacturing process. Here, we consider wire arc additive manufacturing. To this end, Al alloys with additions of Zn, Mg and Cu have been designed considering the requirements of good mechanical properties and limited hot cracking susceptibility. The samples were produced using the cold metal transfer pulse advanced (CMT-PADV) technique, known for its ability to produce lower porosity parts with smaller grain size. After material simulations to determine the optimal heat treatment, the samples were solution heat treated, quenched and aged to enhance their mechanical performance. Chemical analysis, mechanical properties and microstructure evolution were evaluated using optical light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray fluorescence analysis and X-ray radiography, as well as tensile, fatigue and hardness tests. The objective of this research was to evaluate in detail the mechanical properties and microstructure of the newly designed high-performance Al–Zn-based alloy before and after ageing heat treatment. The only defects found in the parts built under optimised conditions were small dispersed porosities, without any visible cracks or lack of fusion. Furthermore, the mechanical properties are superior to those of commercial 7xxx alloys and remarkably independent of the testing direction (parallel or perpendicular to the deposit beads). The presented analyses are very promising regarding additive manufacturing of high-strength aluminium alloys.


Sign in / Sign up

Export Citation Format

Share Document