Magnetic behavior and site occupancy in Fe-doped In2O3 nanoparticles

Author(s):  
Aline Alves Oliveira ◽  
Marlon Ivan Valerio-Cuadros ◽  
Alex Soares de Brito ◽  
Lilian Felipe Silva Tupan ◽  
Reginaldo Barco ◽  
...  
Author(s):  
Peter G. Self ◽  
Peter R. Buseck

ALCHEMI (Atom Location by CHanneling Enhanced Microanalysis) enables the site occupancy of atoms in single crystals to be determined. In this article the fundamentals of the method for both EDS and EELS will be discussed. Unlike HRTEM, ALCHEMI does not place stringent resolution requirements on the microscope and, because EDS clearly distinguishes between elements of similar atomic number, it can offer some advantages over HRTEM. It does however, place certain constraints on the crystal. These constraints are: a) the sites of interest must lie on alternate crystallographic planes, b) the projected charge density on the alternate planes must be significantly different, and c) there must be at least one atomic species that lies solely on one of the planes.An electron beam incident on a crystal undergoes elastic scattering; in reciprocal space this is seen as a diffraction pattern and in real space this is a modulation of the electron current across the unit cell. When diffraction is strong (i.e., when the crystal is oriented near to the Bragg angle of a low-order reflection) the electron current at one point in the unit cell will differ significantly from that at another point.


Author(s):  
N. Qiu ◽  
J. E. Wittig

PtCo hard magnets have specialized applications owing to their relatively high coercivity combined with corrosion resistance and ductility. Increased intrinsic coercivity has been recently obtained by rapid solidification processing of PtCo alloys containing boron. After rapid solidification by double anvil splat quenching and subsequent annealing for 30 minutes at 650°C, an alloy with composition Pt42Co45B13 (at.%) exhibited intrinsic coercivity up to 14kOe. This represents a significant improvement compared to the average coercivities in conventional binary PtCo alloys of 5 to 8 kOe.Rapidly solidified specimens of Pt42Co45B13 (at.%) were annealed at 650°C and 800°C for 30 minutes. The magnetic behavior was characterized by measuring the coercive force (Hc). Samples for TEM analysis were mechanically thinned to 100 μm, dimpled to about 30 nm, and ion milled to electron transparency in a Gatan Duomill at 5 kV and 1 mA gun current. The incident ion beam angle was set at 15° and the samples were liquid nitrogen cooled during milling. These samples were analyzed with a Philips CM20T TEM/STEM operated at 200 kV.


Author(s):  
M.T. Otten ◽  
P.R. Buseck

ALCHEMI (Atom Location by CHannelling-Enhanced Microanalysis) is a TEM technique for determining site occupancies in single crystals. The method uses the channelling of incident electrons along specific crystallographic planes. This channelling results in enhanced x-ray emission from the atoms on those planes, thereby providing the required site-occupancy information. ALCHEMI has been applied with success to spinel, olivine and feldspar. For the garnets, which form a large group of important minerals and synthetic compounds, the channelling effect is weaker, and significant results are more difficult to obtain. It was found, however, that the channelling effect is pronounced for low-index zone-axis orientations, yielding a method for assessing site occupancies that is rapid and easy to perform.


Author(s):  
C. A. Bateman ◽  
A.Z. Ringwelski ◽  
R.W. Broach

Gamma (γ) alumina is referred to as a defect spinel because it has a tetragonally distorted spinel structure (AB2O4) and an insufficient number of cations to fill all cation sites. In the spinel structure, the oxygen lattice is cubic close packed with A- and B-site cations in tetrahedral and octahedral coordination, respectively. The 2l⅓ Al atoms per unit cell of γ alumina can distribute themselves across 16 octahedral and 8 tetrahedral sites.The literature differs on where the 2⅔ cation vacancies per unit cell are located. Wilson and McConnell proposed that the vacancies in γ alumina, as first formed by calcining boehmite, are predominantly on the tetrahedral lattice but, with further heat treatment, move to occupy random positions on both octahedral and tetrahedral lattices. One study using NMR showed that the vacancies lay exclusively on the tetrahedral lattice, independent of the calcination temperature. A more-recent study using Rietveld refinement of powder neutron diffraction data suggested that both octahedral and tetrahedral lattices were partially occupied.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-635-C2-638
Author(s):  
F. Pröbst ◽  
F. E. Wagner ◽  
M. Karger ◽  
G. Wortmann

1980 ◽  
Vol 41 (C8) ◽  
pp. C8-45-C8-48
Author(s):  
A. Stacy ◽  
D. C. Johnson ◽  
M. J. Sienko
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-381-C8-382
Author(s):  
T. Kamimori ◽  
W. L. Liu ◽  
H. Kadomatsu ◽  
M. Goto ◽  
H. Fujiwara

1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


2012 ◽  
Vol 9 (2) ◽  
pp. 87
Author(s):  
Mohd Abdul Fatah Abdul Manan ◽  
M. Ibrahim M. Tahir ◽  
Karen A. Crouse ◽  
Fiona N.-F. How ◽  
David J. Watkin

The crystal structure of the title compound has been determined. The compound crystallized in the triclinic space group P -1, Z = 2, V = 1839 .42( 18) A3 and unit cell parameters a= 11. 0460( 6) A, b = 13 .3180(7) A, c=13. 7321 (8) A, a = 80.659(3 )0, b = 69 .800(3 )0 and g = 77 .007 (2)0 with one disordered dimethylsulfoxide solvent molecule with the sulfur and oxygen atoms are distributed over two sites; S101/S102 [site occupancy factors: 0.6035/0.3965] and 0130/0131 [site occupancy factor 0.3965/0.6035]. The C22-S2 l and C 19-S20 bond distances of 1. 779(7) A and 1. 788(8) A indicate that both of the molecules are connected by the disulfide bond [S20-S21 2.055(2) A] in its thiol form. The crystal structure reveals that both of the 5-bromoisatin moieties are trans with respect to the [S21-S20 and CI 9-Nl 8] and [S20-S21 and C22-N23] bonds whereas the benzyl group from the dithiocarbazate are in the cis configuration with respect to [S21-S20 and C19-S44] and [S20-S21 and C22-S36] bonds. The crystal structure is further stabilized by intermolecular hydrogen bonds of N9-H35···O16 formed between the two molecules and N28-H281 ···O130, N28-H281 ···O131 and C4 l-H4 l l ···O 131 with the solvent molecule.


Sign in / Sign up

Export Citation Format

Share Document