crystallographic planes
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 43)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Detlef-M. Smilgies ◽  
Ruipeng Li

Grazing incidence small- and wide-angle scattering (GISAXS, GIWAXS) are widely applied for the study of organic thin films, be it for the characterization of nanostructured morphologies in block copolymers, nanocomposites, or nanoparticle assemblies, or the packing and orientation of small aromatic molecules and conjugated polymers. Organic thin films typically are uniaxial powders, with specific crystallographic planes oriented parallel to the substrate surface. The associated fiber texture scattering patterns are complicated by refraction corrections and multiple scattering. We present an interactive graphics tool to index such patterns.


2021 ◽  
pp. 1-10
Author(s):  
Denis Fougerouse ◽  
David W. Saxey ◽  
William D. A. Rickard ◽  
Steven M. Reddy ◽  
Rick Verberne

Abstract Well-defined reconstruction parameters are essential to quantify the size, shape, and distribution of nanoscale features in atom probe tomography (APT) datasets. However, the reconstruction parameters of many minerals are difficult to estimate because intrinsic spatial markers, such as crystallographic planes, are not usually present within the datasets themselves. Using transmission and/or scanning electron microscopy imaging of needle-shaped specimens before and after atom probe analysis, we test various approaches to provide best-fit reconstruction parameters for voltage-based APT reconstructions. The results demonstrate that the length measurement of evaporated material, constrained by overlaying pre- and post-analysis images, yields more consistent reconstruction parameters than the measurement of final tip radius. Using this approach, we provide standardized parameters that may be used in APT reconstructions of 11 minerals. The adoption of standardized reconstruction parameters by the geoscience APT community will alleviate potential problems in the measurement of nanoscale features (e.g., clusters and interfaces) caused by the use of inappropriate parameters.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7968
Author(s):  
Lin Qiu ◽  
Yuhao Ma ◽  
Yuxin Ouyang ◽  
Yanhui Feng ◽  
Xinxin Zhang

A new freestanding sensor-based 3ω technique is presented here, which remarkably expands the application of traditional 3ω technology to anisotropic materials. The freestanding flexible sensor was fabricated using the mature flexible printed circuit production technique, which is non-destructive to the samples and applicable to porous surfaces. The thermal conductivities of potassium dihydrogen phosphate (KDP) crystal along the (100), (010) and (001) crystallographic planes were measured based on this new sensor at room temperature. We found that the freestanding flexible sensor has considerable application value for thermal properties’ characterization for crystals with anisotropic thermophysical properties and other structures for which the traditional 3ω technique is not applicable.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3382
Author(s):  
Thamires Santos Silva ◽  
Marcelo Melo Soares ◽  
Ana Claudia Oliveira Carreira ◽  
Gustavo de Sá Schiavo Matias ◽  
Carolina Coming Tegon ◽  
...  

Carbon nanostructures application, such as graphene (Gr) and graphene oxide (GO), provides suitable efforts for new material acquirement in biomedical areas. By aiming to combine the unique physicochemical properties of GO to Poly L-lactic acid (PLLA), PLLA-GO filaments were produced and characterized by X-ray diffraction (XRD). The in vivo biocompatibility of these nanocomposites was performed by subcutaneous and intramuscular implantation in adult Wistar rats. Evaluation of the implantation inflammatory response (21 days) and mesenchymal stem cells (MSCs) with PLLA-GO took place in culture for 7 days. Through XRD, new crystallographic planes were formed by mixing GO with PLLA (PLLA-GO). Using macroscopic analysis, GO implanted in the subcutaneous region showed particles’ organization, forming a structure similar to a ribbon, without tissue invasion. Histologically, no tissue architecture changes were observed, and PLLA-GO cell adhesion was demonstrated by scanning electron microscopy (SEM). Finally, PLLA-GO nanocomposites showed promising results due to the in vivo biocompatibility test, which demonstrated effective integration and absence of inflammation after 21 days of implantation. These results indicate the future use of PLLA-GO nanocomposites as a new effort for tissue engineering (TE) application, although further analysis is required to evaluate their proliferative capacity and viability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2316
Author(s):  
Anoop Kumar Singh ◽  
Shiau-Yuan Huang ◽  
Po-Wei Chen ◽  
Jung-Lung Chiang ◽  
Dong-Sing Wuu

Spinel ZnGa2O4 films were grown on c-plane sapphire substrates at the substrate temperature of 400 °C by radio-frequency magnetron sputtering. Post thermal annealing was employed at the annealing temperature of 700 °C in order to enhance their crystal quality. The effect of thermal annealing on the microstructural and optoelectronic properties of ZnGa2O4 films was systematically investigated in various ambiences, such as air, nitrogen, and oxygen. The X-ray diffraction patterns of annealed ZnGa2O4 films showed the crystalline structure to have (111) crystallographic planes. Transmission electron micrographs verified that ZnGa2O4 film annealed under air ambience possesses a quasi-single-crystalline structure. This ZnGa2O4 film annealed under air ambience exhibited a smooth surface, an excellent average transmittance above 82% in the visible region, and a wide bandgap of 5.05 eV. The oxygen vacancies under different annealing ambiences were revealed a substantial impact on the material and photodetector characteristics by X-ray photoelectron spectrum investigations. ZnGa2O4 film exhibits optimal performance as a metal-semiconductor-metal photodetector when annealed under air ambience. Under these conditions, ZnGa2O4 film exhibits a higher photo/dark current ratio of ~104 order, as well as a high responsivity of 2.53 A/W at the bias of 5 V under an incident optical light of 240 nm. These results demonstrate that quasi-single-crystalline ZnGa2O4 films have significant potential in deep-ultraviolet applications.


2021 ◽  
Author(s):  
Detlef-M. Smilgies ◽  
Ruipeng Li

Grazing incidence small- and wide-angle scattering (GISAXS, GIWAXS) are widely applied for the study of organic thin films, be it for the characterization of nanostructured morphologies in block copolymers, nanocomposites, or nanoparticle assemblies, or the packing and orientation of small aromatic molecules and conjugated polymers. Organic thin films typically are uniaxial powders, with specific crystallographic planes oriented parallel to the substrate surface. The associated fiber texture scattering patterns are complicated by refraction corrections and multiple scattering. We present an interactive graphics tool to index such patterns.


2021 ◽  
Vol 7 (33) ◽  
pp. eabg2549
Author(s):  
Hemant J. Rathod ◽  
Thierry Ouisse ◽  
Miladin Radovic ◽  
Ankit Srivastava

Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4241
Author(s):  
Nedal Al Taradeh ◽  
Eric Frayssinet ◽  
Christophe Rodriguez ◽  
Frederic Morancho ◽  
Camille Sonneville ◽  
...  

This paper proposes a new technique to engineer the Fin channel in vertical GaN FinFET toward a straight and smooth channel sidewall. Consequently, the GaN wet etching in the TMAH solution is detailed; we found that the m-GaN plane has lower surface roughness than crystallographic planes with other orientations, including the a-GaN plane. The grooves and slope (Cuboids) at the channel base are also investigated. The agitation does not assist in Cuboid removal or crystallographic planes etching rate enhancement. Finally, the impact of UV light on m and a-GaN crystal plane etching rates in TMAH has been studied with and without UV light. Accordingly, it is found that the m-GaN plane etching rate is enhanced from 0.69 to 1.09 nm/min with UV light; in the case of a-GaN plane etching, UV light enhances the etching rate from 2.94 to 4.69 nm/min.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 577
Author(s):  
Jing Yu ◽  
Yongmei Zhang ◽  
Yuhong Zhao ◽  
Yue Ma

Anisotropies in the elasticity, sound velocity, and minimum thermal conductivity of low borides VB, V5B6, V3B4, and V2B3 are discussed using the first-principles calculations. The various elastic anisotropic indexes (AU, Acomp, and Ashear), three-dimensional (3D) surface contours, and their planar projections among different crystallographic planes of bulk modulus, shear modulus, and Young’s modulus are used to characterize elastic anisotropy. The bulk, shear, and Young’s moduli all show relatively strong degrees of anisotropy. With increased B content, the degree of anisotropy of the bulk modulus increases while those of the shear modulus and Young’s modulus decrease. The anisotropies of the sound velocity in the different planes show obvious differences. Meanwhile, the minimum thermal conductivity shows little dependence on crystallographic direction.


Author(s):  
Akiko Nakao ◽  
Taketo Moyoshi ◽  
Kentaro Moriyama ◽  
Takeshi Matsumura ◽  
Kenshirou Iba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document