Anisotropies in the elasticity, sound velocity, and minimum thermal conductivity of low borides VB, V5B6, V3B4, and V2B3 are discussed using the first-principles calculations. The various elastic anisotropic indexes (AU, Acomp, and Ashear), three-dimensional (3D) surface contours, and their planar projections among different crystallographic planes of bulk modulus, shear modulus, and Young’s modulus are used to characterize elastic anisotropy. The bulk, shear, and Young’s moduli all show relatively strong degrees of anisotropy. With increased B content, the degree of anisotropy of the bulk modulus increases while those of the shear modulus and Young’s modulus decrease. The anisotropies of the sound velocity in the different planes show obvious differences. Meanwhile, the minimum thermal conductivity shows little dependence on crystallographic direction.