A 1000 Wh kg−1 Li–Air battery: Cell design and performance

2019 ◽  
Vol 419 ◽  
pp. 112-118 ◽  
Author(s):  
Jung O. Park ◽  
Mokwon Kim ◽  
Joon-Hee Kim ◽  
Kyoung H. Choi ◽  
Heung Chan Lee ◽  
...  
Author(s):  
Susanta K. Das ◽  
Abhijit Sarkar

A tri-layered solid electrolyte and an oxygen permeable solid air cathode for lithium-air battery cells were synthesized in this investigation. Detailed fabrication procedures for solid electrolyte, air cathode and the assembly of real-world lithium-air battery cell are described. Fabrication of real-world lithium-air button cells was performed using the synthesized tri-layered solid electrolyte, an oxygen permeable air cathode, and a metallic lithium anode. The lithium-air button cells were tested under dry air with 0.1mA∼0.2mA discharge/charge current at different temperatures. It was found that interfacial contact resistances play an important role in Li-air battery cell performance. Experimental results suggested that the lack of robust interfacial contact among solid electrolyte, air cathode and lithium metal anode were the primary factors for the cell’s high internal resistances. It was also found that once the cell internal resistance issues were resolved, the discharge curve of the battery cell was much smoother and the cell was able to discharge at above 2.0V for up to 40 hours. It indicated that in order to have better performing lithium-air battery cell, interfacial contact resistances issue must be resolved very efficiently.


Author(s):  
Susanta K. Das ◽  
K. Joel Berry

Synthesis of hyper branched polymer (HBP) based electrolyte has been examined in this study. A real world lithium-air battery cell was fabricated using the developed HBP electrolyte, oxygen permeable air cathode and lithium metal as anode material. Detailed synthesis procedures of hyper branched polymer electrolyte and the effect of different operation conditions on the real-world lithium-air battery cell were discussed in this paper. The fabricated battery cells were tested under dry air with 0.1mA∼0.2mA discharge current to determine the effect of different operation conditions such as carbon source, electrolyte types and cathode processes. It was found that different processes affect the battery cell performance significantly. We developed optimized battery cell materials upon taking into account the effect of different processes. Several battery cells were fabricated using the same optimized anode, cathode and electrolyte materials in order to determine the battery cells performance and reproducibility. Experimental results showed that the optimized battery cells were able to discharge over 55 hours at over 2.5V. It implies that the optimized battery cell can hold charge for more than two days at over 2.5V. It was also shown that the lithium-air battery cell can be reproduced without loss of performance with the optimized battery cell materials.


2020 ◽  
Vol 388 ◽  
pp. 124257
Author(s):  
Fanqi Wang ◽  
Meifen Wu ◽  
Bobba V.R. Chowdari ◽  
Zhaoyin Wen

2012 ◽  
Vol 199 ◽  
pp. 247-255 ◽  
Author(s):  
Jim Adams ◽  
Mohan Karulkar

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Slamet Priyono

Substitution of local TiO2 on the synthesis of Li4Ti5O12 for anodes lithium ion battery with solid state reaction method had been done. This study aimed to substitute raw materials TiO2 and determine the length of sintering time. Synthesis was done by mixing the raw materials like local TiO2 and LiOH.H2O in a stoichiometric then milled for 15 hours followed by calcination at a temperature of 600oC with sintering time of 2 hours for each samples. Sintering was done by varying the length of sintering time i.e. 4, 6 and 8 hours at a temperature of 850 °C. In this study the effect of sintering time on the material characteristics and performance of battery cells studied in detail. The characterization was conducted by the XRD to determine the structure and the LTO phases, SEM/EDX test to determine the morphology, surface topography and composition of all samples. PSA test was performed to determine the particle size while battery cell performance was tests with automatic charge-discharge battery cycler. From characterization found that the maximum length of time that is resistant to sintering samples 6 hours. The resulting active material has an LTO phase with spinel crystal structure simple cubic, but not produced a single phase, there are some impurity phases. The results of SEM/EDX provides irregular morphology, have pores, many impurities and varying sizes. Charge-discharge measurement showed that optimum sintering was got at 6 h which gave specific capacity about 50 mAh/g.


Author(s):  
Paul Lee ◽  
Ligong Yang ◽  
Caner Demirdogen

Computer-Aided Engineering (CAE) tools have been widely used in the design of automotive components and systems. Methods, procedures and measurables for analyses involving Internal Combustion Engine (ICE) components are well-defined and well developed. Comparatively, significantly less attention has been paid to the design and analysis of test cells. Better designed test cells will lead to increased test cell availability and thus also increases engine performance test opportunities. This trend was observed in Cummins Inc. where CAE-guided test cell designs improved test-cell availability and rate of engine development. Here, improved conversion efficiencies in test cell Selective Catalyst Reduction (SCR) modules were predicted using Computational Fluid Dynamics (CFD) tools, and validated against data collected from the test cells. The resultant improvements resulted in dramatic increases in test cell up-time. This paper documents how CAE tools commonly used in engine design were successfully expanded to aid the design of Cummins Inc. test cells. It presents the CFD methods that were used in this analysis, compares CFD predictions to actual conversion efficiencies in the SCR module, and also proposes a set of analysis tasks and methods that can be applied to improve test cell design and performance in the future.


Sign in / Sign up

Export Citation Format

Share Document