scholarly journals Optimization of the in-situ U–Pb age dating method via LA-Quadrupole-ICP-MS with applications to the timing of U–Zr–Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil

2015 ◽  
Vol 62 ◽  
pp. 70-79 ◽  
Author(s):  
Lynthener Bianca Takenaka ◽  
Cristiano Lana ◽  
Ricardo Scholz ◽  
Herminio Arias Nalini ◽  
Adriana Tropia de Abreu
Lithos ◽  
2021 ◽  
pp. 106330
Author(s):  
Vincenza Guarino ◽  
Michele Lustrino ◽  
Alberto Zanetti ◽  
Colombo C.G. Tassinari ◽  
Excelso Ruberti ◽  
...  

2015 ◽  
Vol 30 (2) ◽  
pp. 494-505 ◽  
Author(s):  
Jun-Ichi Kimura ◽  
Qing Chang ◽  
Keita Itano ◽  
Tsuyoshi Iizuka ◽  
Bogdan Stefanov Vaglarov ◽  
...  

High precision U–Pb dating using multiple Faraday collectors has become available in LA-MC-ICP-MS.


2020 ◽  
Vol 61 (5) ◽  
pp. 1-10
Author(s):  
Luyen Dinh Nguyen ◽  
Hieu Trung Pham ◽  
Nhuan Van Do ◽  
Thai Ngoc Tran ◽  
Thu Thi Le ◽  
...  

In recent years, the U - Pb isotopic dating method for cassiterite minerals has been used by many scientists around the world in the field of mining and mineral research. This paper presents an overview of the history, development and results achieved using this dating method in the field of mining and mineral research in the world. The LA - ICP - MS U - Pb isotopic dating method for cassiterite minerals was used at the Lung Muoi Sn - W deposit in Pia Oac region, Cao Bang province. The result of LA - ICP - MS U - Pb cassiterite isotopic dating shows the Sn - W mineralization in the Lung Muoi deposit crystallized at 88 Ma. The new age results in this paper are very consistent with the previously published results of the Pia Oac granite.


2021 ◽  
Author(s):  
Nick Roberts ◽  
Jack Lee

<p>Several isotopic systems can potentially be used to provide absolute chronology of carbonate minerals; these include Rb-Sr, Sm-Nd, U-Pb and U-Th. The production of a robust date requires incorporation of the parent isotope during formation, and ideally low abundance of the daughter isotope. Variable parent-daughter (P/D) abundance during formation additionally can increase the robustness of the resulting isochron. The ability to use high spatial resolution sampling via laser ablation (LA-) ICP-MS, makes it the most attractive technique, as varying P/D ratios can be sampled within single age domains, whether these be crystals, growth bands, or other textural domains. Of the systems available in carbonate, U-Pb is the only one that is commonly applied with LA-ICP-MS methods, although the others are all possible with modern instrumentation. Of note, collision-cell technology means that Rb-Sr is regaining popularity as an in situ dating method. Carbonate geochronology can be achieved at a range of timescales, with U-Th ranging from 100s yrs to ca. 500 ka, and U-Pb ranging from 100s ka to 100s Ma. The potential for isotopic disequilibrium effecting measured U-Pb ages, means that young (< 10 Ma) U-Pb dates are susceptible to inaccuracy. Published LA-ICP-MS U-Pb dates suggest that this method can be pushed well into the Precambrian.</p><p> </p><p>The application of U-Th and U-Pb geochronology to provide direct timing constraints on deformation gained ground around 10 and 5 years ago, respectively. Because LA-ICP-MS instrumentation is relatively common, and because ancient carbonates provide undated material of significant interest, U-Pb in particular has become a rapidly growing technique. The biggest advance in LA-ICP-MS U-Pb dating has been the characterisation of matrix-matched calcite reference materials (RMs). The observation of minor matrix-related effects between carbonate matrices however, means that the availability of well characterised RMs for minerals such as dolomite and siderite, are a limiting factor in the accuracy of these non-calcite dates. In terms of deformation, most existing data corresponds to calcite.</p><p> </p><p>Calcite precipitates from fluid at a range of temperatures in the upper crust, with fluid-flow typically being enhanced by brittle deformation, i.e. faulting and fracturing. To link calcite dates to the timing of specific deformational events, such as fault slip or fracture-opening, various ‘syn-tectonic’ or ‘syn-kinematic’ vein types have ben utilised. These include slickenfibres, breccia cements, and various types of vein arrays. Each of these structures has variable ability to faithfully record the timing of fault slip, and the ability to link calcite mineralisation to the timing of fault slip remains one of the most assumptive parts of this method. Detailed petrographic and compositional characterisation and documentation are required, for which a range of methods are available, such as cathodoluminescence and trace element mapping. Along with a summary of the advances in carbonate geochronology, various examples of vein structures and of methods for characterisation will be discussed, including examples where there is evidence for overprinting by later fluid-flow.</p>


2018 ◽  
Vol 52 (5) ◽  
pp. 433-439 ◽  
Author(s):  
Le Zhang ◽  
Zhong-Yuan Ren ◽  
Xiao-Ping Xia ◽  
Ce Wang ◽  
Sheng-Ping Qian

Radiocarbon ◽  
2016 ◽  
Vol 58 (1) ◽  
pp. 193-203 ◽  
Author(s):  
Li Zhang ◽  
Zhenkun Wu ◽  
Hong Chang ◽  
Ming Li ◽  
Guocheng Dong ◽  
...  

ABSTRACTExposure age dating using in situ10Be and 26Al is a very useful technique for dating fluvial terraces. This is especially true in semiarid regions where other methods suffer from a paucity of suitable dating materials. This article describes sample preparation procedures and analytical benchmarks established at the Xi’an Accelerator Mass Spectrometry (AMS) Center for the study of in situ10Be and 26Al. Four intercomparison samples were analyzed in the study, using an improved sample preparation method. The exposure age results are shown to be in good agreement with published data, and demonstrate the reliability of the dating method. This article also presents new 10Be and 26Al results from quartz samples collected from a series of fluvial terraces from Guanshan River, along the Qilian Shan, northeastern Tibetan Plateau. The ages of three fluvial terraces from the Jinfosi site are shown to be (56.4±5.3) ka for T3, (10.7±1.0) ka for T2, and (7.2±1.0) ka for T1. The dating results are consistent with published data from the same region (10Be, 14C, and optically stimulated luminescence dating methods). A comparison of high-resolution climate records with age constraints for the terrace formation shows a close relationship between terrace formation and climate change.


Author(s):  
Nick M. W. Roberts ◽  
Kerstin Drost ◽  
Matthew S. A. Horstwood ◽  
Daniel J. Condon ◽  
David Chew ◽  
...  

Abstract. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) U-Pb geochronology of carbonate minerals, calcite in particular, is rapidly gaining popularity as an absolute dating method. The technique has proven useful for dating fracture-fill calcite, which provides a powerful record of palaeohydrology, and within certain constraints, can be used to bracket the timing of brittle fracture and fault development. The high spatial resolution of LA-ICP-MS U-Pb carbonate geochronology is beneficial over traditional Isotope Dilution methods, particularly for diagenetic and hydrothermal calcite, because uranium and lead are heterogeneously distributed on the sub-mm scale. At the same time, this can provide limitations to the method, as locating zones of radiogenic lead can be time-consuming and ‘hit or miss’. Here, we present strategies for dating carbonates with in situ techniques, through imaging and petrographic techniques to data interpretation; we focus on examples of fracture-filling calcite, but most of our discussion is relevant to all carbonate applications. We demonstrate these strategies through a series of case studies. We review several limitations to the method, including open system behaviour, variable initial lead compositions, and U-daughter disequilibrium. We also discuss two approaches to data collection: traditional spot analyses guided by petrographic and elemental imaging, and image-based dating that utilises LA-ICP-MS elemental and isotopic map data.


2006 ◽  
Vol 10 ◽  
pp. 25-28 ◽  
Author(s):  
Dirk Frei ◽  
Julie A. Hollis ◽  
Axel Gerdes ◽  
Dan Harlov ◽  
Christine Karlsson ◽  
...  

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed in 1985 and the first commercial laser ablation systems were introduced in the mid 1990s. Since then, LA-ICP-MS has become an important analytical tool in the earth sciences. Initially, the main interest for geologists was in its ability to quantitatively determine the contents of a wide range of elements in many minerals at very low concentrations (a few ppm and below) with relatively high spatial resolution (spot diameters of typically 30–100 μm). The potential of LA-ICP-MS for rapid in situ U–Th–Pb geochronology was already realised in the early to mid 1990s. However, the full potential of LA-ICP-MS as the low-cost alternative to ion-microprobe techniques for highly precise and accurate in situ U–Th–Pb age dating was not realised until the relatively recent advances in laser technologies and the introduction of magnetic sectorfield ICP-MS (SF-ICPMS) instruments. In March 2005, the Geological Survey of Denmark and Greenland (GEUS) commissioned a new laser ablation magnetic sectorfield inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) facility employing a ThermoFinnigan Element2 high resolution magnetic sectorfield ICP-MS and a Merchantek New Wave 213 nm UV laser ablation system. The new GEUS LA-SF-ICP-MS facility is widely used on Survey research projects in Denmark and Greenland, as well as in collaborative research and contract projects conducted with partners from academia and industry worldwide. Here, we present examples from some of the these ongoing studies that highlight the application of the new facility for advanced geochronological and trace element in situ microanalysis of geomaterials. The application of LASF-ICP-MS based in situ zircon geochronology to regional studies addressing the Archaean geology of southern West Greenland is presented by Hollis et al. (2006, this volume).


Sign in / Sign up

Export Citation Format

Share Document