exposure dating
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 108)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
Felix Martin Hofmann ◽  
Frank Preusser ◽  
Irene Schimmelpfennig ◽  
Laëtitia Léanni ◽  
Aster team (Georges Aumaître, Karim Keddadouche & Fawzi Zaid

Author(s):  
A. Hughes ◽  
D.H. Rood ◽  
D.E. DeVecchio ◽  
A.C. Whittaker ◽  
R.E. Bell ◽  
...  

The quantification of rates for the competing forces of tectonic uplift and erosion has important implications for understanding topographic evolution. Here, we quantify the complex interplay between tectonic uplift, topographic development, and erosion recorded in the hanging walls of several active reverse faults in the Ventura basin, southern California, USA. We use cosmogenic 26Al/10Be isochron burial dating and 10Be surface exposure dating to construct a basin-wide geochronology, which includes burial dating of the Saugus Formation: an important, but poorly dated, regional Quaternary strain marker. Our ages for the top of the exposed Saugus Formation range from 0.36 +0.18/−0.22 Ma to 1.06 +0.23/−0.26 Ma, and our burial ages near the base of shallow marine deposits, which underlie the Saugus Formation, increase eastward from 0.60 +0.05/−0.06 Ma to 3.30 +0.30/−0.41 Ma. Our geochronology is used to calculate rapid long-term reverse fault slip rates of 8.6−12.6 mm yr−1 since ca. 1.0 Ma for the San Cayetano fault and 1.3−3.0 mm yr−1 since ca. 1.0 Ma for the Oak Ridge fault, which are both broadly consistent with contemporary reverse slip rates derived from mechanical models driven by global positioning system (GPS) data. We also calculate terrestrial cosmogenic nuclide (TCN)-derived, catchment-averaged erosion rates that range from 0.05−1.14 mm yr−1 and discuss the applicability of TCN-derived, catchment-averaged erosion rates in rapidly uplifting, landslide-prone landscapes. We compare patterns in erosion rates and tectonic rates to fluvial response times and geomorphic landscape parameters to show that in young, rapidly uplifting mountain belts, catchments may attain a quasi-steady-state on timescales of <105 years even if catchment-averaged erosion rates are still adjusting to tectonic forcing.


2021 ◽  
pp. 1-22
Author(s):  
Timothy T. Barrows ◽  
Stephanie C. Mills ◽  
Kathryn Fitzsimmons ◽  
Robert Wasson ◽  
Robert Galloway

Abstract Only a small area of the Australian mainland was glaciated during the Pleistocene, whereas periglacial deposits are far more common, indicating that cold environments were extensive and a major influence on landscape evolution. Here we identify representative low-elevation examples of scree slopes and frost action, together with fans and valley fills, indicating pronounced erosion cycles during the Pleistocene. To date the deposits, we explore approaches using radiocarbon, optically stimulated luminescence, and profile dating using the cosmogenic nuclide 10Be. The radiocarbon and optical ages show that screes, alluvial valley fill, and fans were deposited between 66–13 ka during the coldest part of the last glacial cycle, and within the previous glacial cycle. Exposure dating indicates further landscape erosion cycles back to the mid Pleistocene. Together, the deposits indicate the frost cracking limit was ~1300 m lower at 680 ± 10 m and mean winter temperature was 8.2 ± 0.5°C colder than present. Periglacial conditions probably affected much of southeastern Australia. The treeless and dry conditions resulted in widespread erosion and increased run off. Combined with increased snow storage within catchments, rivers were paradoxically larger, with high seasonal discharge and sediment loads.


2021 ◽  
Author(s):  
◽  
Richard Jones

<p>Earth’s climate is undergoing dramatic warming that is unprecedented in at least the last ~2000 years. Outlets of the Antarctic ice sheet are experiencing dynamic thinning, terminus retreat and mass loss, however, we are currently unable to accurately predict their future response. The drivers and mechanisms responsible for these observed changes can be better understood by studying the behaviour of outlet glaciers in the geological past. Here, I use cosmogenic nuclide surface-exposure dating and numerical glacier modelling to investigate the past configurations and dynamics of Transantarctic Mountain outlet glaciers, in the Ross Sea sector of Antarctica.  Numerical modelling was first applied to understand the present-day and past behaviour of Skelton Glacier. A suite of sensitivity experiments reveal that Skelton Glacier is most susceptible to atmospheric temperature through its affect on basal sliding near the groundingline. Under past climates, large changes occurred in the lower reaches of the glacier, with basal sliding and bedrock erosion predicted in the overdeepened basins during both the Pliocene and Quaternary. Skelton Glacier was likely much shorter and thinner during Pliocene interglacials, with warm-based sliding that extended along most of its length.  Informed by the glacier modelling, I applied surface-exposure dating to constrain past fluctuations in the geometry of Skelton Glacier. The lower reaches of the glacier were likely thicker at the Last Glacial Maximum (LGM), supporting the idea of buttressing by grounded ice in the Ross Sea during glacial periods. The glacier then thinned to near-modern surface elevations by ~5.8 ka before present (BP). Multiple isotope analysis (²⁶Al-¹⁰Be) and exposure-burial modelling indicates that Skelton Glacier has fluctuated between interglacial and glacial configurations probably at orbital frequencies since the Miocene. These data record a total of >10 Ma of exposure and 2.5 Ma of burial. An unexpected outcome is that the average cosmogenic production rate over this time appears to have been at least twice that of today.  The long-term dynamics of Transantarctic Mountain outlet glaciers are further explored at Mackay Glacier. Here, geomorphological evidence reveals that glaciers can both erode and preserve bedrock surfaces during the same glacial episode, with basal erosion controlled primarily by ice thickness. Mackay Glacier likely experienced a widespread erosive regime prior to the Quaternary and a polythermal glacier regime during the LGM.  Deglaciation following the LGM is constrained with (¹⁰Be) surface-exposure dating at Mackay Glacier. Samples collected at two nunataks, across four transects, reveal glacier thinning of >260 m between the LGM and ~200 years BP. Ice surface lowering was initially gradual, however an episode of rapid thinning is then recorded at ~6.8 ka BP, during a period of relative climatic and oceanic stability. This accelerated surface lowering occurred at a rate commensurate with modern observations of rapid ice sheet thinning, persisted for at least four centuries, and resulted in >180 m of ice loss. Numerical modelling indicates that ice surface drawdown resulted from ‘marine ice sheet instability’ as the grounding-line retreated through a deep glacial trough on the inner continental-shelf.  This research provides new geological constraints and quantitative predictions of the past behaviour of Transantarctic Mountain outlet glaciers. The basal conditions and discharge of these glaciers evolved through the Late Cenozoic in response to climate forcing at orbital timescales, but also to topographically-controlled feedbacks at centennial to millennial timescales. Importantly, under enhanced atmospheric warming, these results imply that such outlet glaciers could experience greater ice loss through increased basal sliding and unstable grounding-line retreat into overdeepened basins.</p>


2021 ◽  
Author(s):  
◽  
Richard Jones

<p>Earth’s climate is undergoing dramatic warming that is unprecedented in at least the last ~2000 years. Outlets of the Antarctic ice sheet are experiencing dynamic thinning, terminus retreat and mass loss, however, we are currently unable to accurately predict their future response. The drivers and mechanisms responsible for these observed changes can be better understood by studying the behaviour of outlet glaciers in the geological past. Here, I use cosmogenic nuclide surface-exposure dating and numerical glacier modelling to investigate the past configurations and dynamics of Transantarctic Mountain outlet glaciers, in the Ross Sea sector of Antarctica.  Numerical modelling was first applied to understand the present-day and past behaviour of Skelton Glacier. A suite of sensitivity experiments reveal that Skelton Glacier is most susceptible to atmospheric temperature through its affect on basal sliding near the groundingline. Under past climates, large changes occurred in the lower reaches of the glacier, with basal sliding and bedrock erosion predicted in the overdeepened basins during both the Pliocene and Quaternary. Skelton Glacier was likely much shorter and thinner during Pliocene interglacials, with warm-based sliding that extended along most of its length.  Informed by the glacier modelling, I applied surface-exposure dating to constrain past fluctuations in the geometry of Skelton Glacier. The lower reaches of the glacier were likely thicker at the Last Glacial Maximum (LGM), supporting the idea of buttressing by grounded ice in the Ross Sea during glacial periods. The glacier then thinned to near-modern surface elevations by ~5.8 ka before present (BP). Multiple isotope analysis (²⁶Al-¹⁰Be) and exposure-burial modelling indicates that Skelton Glacier has fluctuated between interglacial and glacial configurations probably at orbital frequencies since the Miocene. These data record a total of >10 Ma of exposure and 2.5 Ma of burial. An unexpected outcome is that the average cosmogenic production rate over this time appears to have been at least twice that of today.  The long-term dynamics of Transantarctic Mountain outlet glaciers are further explored at Mackay Glacier. Here, geomorphological evidence reveals that glaciers can both erode and preserve bedrock surfaces during the same glacial episode, with basal erosion controlled primarily by ice thickness. Mackay Glacier likely experienced a widespread erosive regime prior to the Quaternary and a polythermal glacier regime during the LGM.  Deglaciation following the LGM is constrained with (¹⁰Be) surface-exposure dating at Mackay Glacier. Samples collected at two nunataks, across four transects, reveal glacier thinning of >260 m between the LGM and ~200 years BP. Ice surface lowering was initially gradual, however an episode of rapid thinning is then recorded at ~6.8 ka BP, during a period of relative climatic and oceanic stability. This accelerated surface lowering occurred at a rate commensurate with modern observations of rapid ice sheet thinning, persisted for at least four centuries, and resulted in >180 m of ice loss. Numerical modelling indicates that ice surface drawdown resulted from ‘marine ice sheet instability’ as the grounding-line retreated through a deep glacial trough on the inner continental-shelf.  This research provides new geological constraints and quantitative predictions of the past behaviour of Transantarctic Mountain outlet glaciers. The basal conditions and discharge of these glaciers evolved through the Late Cenozoic in response to climate forcing at orbital timescales, but also to topographically-controlled feedbacks at centennial to millennial timescales. Importantly, under enhanced atmospheric warming, these results imply that such outlet glaciers could experience greater ice loss through increased basal sliding and unstable grounding-line retreat into overdeepened basins.</p>


2021 ◽  
Author(s):  
◽  
Lisa Dowling

<p>Mountain glaciers are sensitive climate indicators, as climate variability drives mass changes that are expressed in glacier length fluctuations. These length changes are preserved in the geological record, thus offering the potential to generate new palaeoclimate proxy data that can be used to extend instrumental climate records. This study presents geomorphological mapping and cosmogenic ¹⁰Be surface exposure dating of the Holocene moraines at Dart Glacier, New Zealand. These findings show that an early Holocene advance (~6 km longer than present-day) took place ~7817 ± 336 years ago. Moraine ages also show that a more restricted glacier readvance (~4 km longer than present-day) occurred ~321 ± 44 years ago. Through better constraining the timing and magnitude of Holocene glacier length changes, we extend the ~100-year history of observational records in the upper Dart valley.  Net retreat of Dart Glacier during the Holocene is consistent with other moraine chronologies from New Zealand, which supports existing hypotheses that suggest summer insolation was the dominant driver of multi-millennial climate change at southern mid-latitudes during the current interglacial. Individual moraine forming events at Dart Glacier also coincide with moraine ages from several other catchments in the Southern Alps and likely reflect shorter-term (decadal-centennial-scale) climatic changes. The new geological record constraints of length changes at Dart Glacier offer the opportunity to test such hypotheses more formally using physics-based modelling.  Connecting Holocene moraine records to historical glacier observations using ¹⁰Be surface exposure dating requires consistently low background levels of this rare isotope. Systematic blank experiments show that concentrated analytical grade hydrofluoric acid and reused beakers are likely the largest contributors of ¹⁰Be to the average process blank in the VUW Cosmogenic Laboratory. Based on these findings I recommend small methodological improvements that could be implemented to lower process blank ratios for routine application of ¹⁰Be surface exposure dating to near-historic glacial landforms.</p>


2021 ◽  
Author(s):  
◽  
Lisa Dowling

<p>Mountain glaciers are sensitive climate indicators, as climate variability drives mass changes that are expressed in glacier length fluctuations. These length changes are preserved in the geological record, thus offering the potential to generate new palaeoclimate proxy data that can be used to extend instrumental climate records. This study presents geomorphological mapping and cosmogenic ¹⁰Be surface exposure dating of the Holocene moraines at Dart Glacier, New Zealand. These findings show that an early Holocene advance (~6 km longer than present-day) took place ~7817 ± 336 years ago. Moraine ages also show that a more restricted glacier readvance (~4 km longer than present-day) occurred ~321 ± 44 years ago. Through better constraining the timing and magnitude of Holocene glacier length changes, we extend the ~100-year history of observational records in the upper Dart valley.  Net retreat of Dart Glacier during the Holocene is consistent with other moraine chronologies from New Zealand, which supports existing hypotheses that suggest summer insolation was the dominant driver of multi-millennial climate change at southern mid-latitudes during the current interglacial. Individual moraine forming events at Dart Glacier also coincide with moraine ages from several other catchments in the Southern Alps and likely reflect shorter-term (decadal-centennial-scale) climatic changes. The new geological record constraints of length changes at Dart Glacier offer the opportunity to test such hypotheses more formally using physics-based modelling.  Connecting Holocene moraine records to historical glacier observations using ¹⁰Be surface exposure dating requires consistently low background levels of this rare isotope. Systematic blank experiments show that concentrated analytical grade hydrofluoric acid and reused beakers are likely the largest contributors of ¹⁰Be to the average process blank in the VUW Cosmogenic Laboratory. Based on these findings I recommend small methodological improvements that could be implemented to lower process blank ratios for routine application of ¹⁰Be surface exposure dating to near-historic glacial landforms.</p>


2021 ◽  
Vol 17 (6) ◽  
pp. 2451-2479
Author(s):  
Sandra M. Braumann ◽  
Joerg M. Schaefer ◽  
Stephanie M. Neuhuber ◽  
Christopher Lüthgens ◽  
Alan J. Hidy ◽  
...  

Abstract. Glaciers preserve climate variations in their geological and geomorphological records, which makes them prime candidates for climate reconstructions. Investigating the glacier–climate system over the past millennia is particularly relevant first because the amplitude and frequency of natural climate variability during the Holocene provides the climatic context against which modern, human-induced climate change must be assessed. Second, the transition from the last glacial to the current interglacial promises important insights into the climate system during warming, which is of particular interest with respect to ongoing climate change. Evidence of stable ice margin positions that record cooling during the past 12 kyr are preserved in two glaciated valleys of the Silvretta Massif in the eastern European Alps, the Jamtal (JAM) and the Laraintal (LAR). We mapped and dated moraines in these catchments including historical ridges using beryllium-10 surface exposure dating (10Be SED) techniques and correlate resulting moraine formation intervals with climate proxy records to evaluate the spatial and temporal scale of these cold phases. The new geochronologies indicate the formation of moraines during the early Holocene (EH), ca. 11.0 ± 0.7 ka (n = 19). Boulder ages along historical moraines (n = 6) suggest at least two glacier advances during the Little Ice Age (LIA; ca. 1250–1850 CE) around 1300 CE and in the second half of the 18th century. An earlier advance to the same position may have occurred around 500 CE. The Jamtal and Laraintal moraine chronologies provide evidence that millennial-scale EH warming was superimposed by centennial-scale cooling. The timing of EH moraine formation coincides with brief temperature drops identified in local and regional paleoproxy records, most prominently with the Preboreal Oscillation (PBO) and is consistent with moraine deposition in other catchments in the European Alps and in the Arctic region. This consistency points to cooling beyond the local scale and therefore a regional or even hemispheric climate driver. Freshwater input sourced from the Laurentide Ice Sheet (LIS), which changed circulation patterns in the North Atlantic, is a plausible explanation for EH cooling and moraine formation in the Nordic region and in Europe.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesco Iezzi ◽  
Gerald Roberts ◽  
Joanna Faure Walker ◽  
Ioannis Papanikolaou ◽  
Athanassios Ganas ◽  
...  

AbstractTo assess whether continental extension and seismic hazard are spatially-localized on single faults or spread over wide regions containing multiple active faults, we investigated temporal and spatial slip-rate variability over many millennia using in-situ 36Cl cosmogenic exposure dating for active normal faults near Athens, Greece. We study a ~ NNE-SSW transect, sub-parallel to the extensional strain direction, constrained by two permanent GPS stations located at each end of the transect and arranged normal to the fault strikes. We sampled 3 of the 7 seven normal faults that exist between the GPS sites for 36Cl analyses. Results from Bayesian inference of the measured 36Cl data implies that some faults slip relatively-rapidly for a few millennia accompanied by relative quiescence on faults across strike, defining out-of-phase fault activity. Assuming that the decadal strain-rate derived from GPS applies over many millennia, slip on a single fault can accommodate ~ 30–75% of the regional strain-rate for a few millennia. Our results imply that only a fraction of the total number of Holocene active faults slip over timescales of a few millennia, so continental deformation and seismic hazard are localized on specific faults and over a length-scale shorter than the spacing of the present GPS network over this time-scale. Thus, (1) the identification of clustered fault activity is vital for probabilistic seismic hazard assessments, and (2) a combination of dense geodetic observations and palaeoseismology is needed to identify the precise location and width of actively deforming zones over specific time periods.


Sign in / Sign up

Export Citation Format

Share Document