Modified quasi-profile likelihoods from estimating functions

2008 ◽  
Vol 138 (10) ◽  
pp. 3059-3068 ◽  
Author(s):  
Ruggero Bellio ◽  
Luca Greco ◽  
Laura Ventura
1991 ◽  
Vol 111 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Naoki Yamamura ◽  
Masahiko Iwasaki ◽  
Hirotaka Sakurai ◽  
Yuzuru Tunehiro

2009 ◽  
Vol 139 (4) ◽  
pp. 1449-1461 ◽  
Author(s):  
M. Ghahramani ◽  
A. Thavaneswaran
Keyword(s):  

2004 ◽  
Vol 41 (A) ◽  
pp. 119-130
Author(s):  
Y.-X. Lin ◽  
D. Steel ◽  
R. L Chambers

This paper applies the theory of the quasi-likelihood method to model-based inference for sample surveys. Currently, much of the theory related to sample surveys is based on the theory of maximum likelihood. The maximum likelihood approach is available only when the full probability structure of the survey data is known. However, this knowledge is rarely available in practice. Based on central limit theory, statisticians are often willing to accept the assumption that data have, say, a normal probability structure. However, such an assumption may not be reasonable in many situations in which sample surveys are used. We establish a framework for sample surveys which is less dependent on the exact underlying probability structure using the quasi-likelihood method.


2018 ◽  
Vol 15 (2) ◽  
pp. 20 ◽  
Author(s):  
Budi Lestari

Abstract Regression model of bi-respond nonparametric is a regression model which is illustrating of the connection pattern between respond variable and one or more predictor variables, where between first respond and second respond have correlation each other. In this paper, we discuss the estimating functions of regression in regression model of bi-respond nonparametric by using different two estimation techniques, namely, smoothing spline and kernel. This study showed that for using smoothing spline and kernel, the estimator function of regression which has been obtained in observation is a regression linier. In addition, both estimators that are obtained from those two techniques are systematically only different on smoothing matrices. Keywords: kernel estimator, smoothing spline estimator, regression function, bi-respond nonparametric regression model. AbstrakModel regresi nonparametrik birespon adalah suatu model regresi yang menggambarkan pola hubungan antara dua variabel respon dan satu atau beberapa variabel prediktor dimana antara respon pertama dan respon kedua berkorelasi. Dalam makalah ini dibahas estimasi fungsi regresi dalam  model regresi nonparametrik birespon menggunakan dua teknik estimasi yang berbeda, yaitu smoothing spline dan kernel. Hasil studi ini menunjukkan bahwa, baik menggunakan smoothing spline maupun menggunakan kernel, estimator fungsi regresi yang didapatkan merupakan fungsi linier dalam observasi. Selain itu, kedua estimator fungsi regresi yang didapatkan dari kedua teknik estimasi tersebut secara matematis hanya dibedakan oleh matriks penghalusnya.Kata Kunci : Estimator Kernel, Estimator Smoothing Spline, Fungsi Regresi, Model Regresi Nonparametrik Birespon.


Sign in / Sign up

Export Citation Format

Share Document