Three-dimensional wind turbine positioning using Gaussian particle swarm optimization with differential evolution

2018 ◽  
Vol 172 ◽  
pp. 317-324 ◽  
Author(s):  
MengXuan Song ◽  
Kai Chen ◽  
Jun Wang
Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


2021 ◽  
Vol 11 (6) ◽  
pp. 2703
Author(s):  
Warisa Wisittipanich ◽  
Khamphe Phoungthong ◽  
Chanin Srisuwannapa ◽  
Adirek Baisukhan ◽  
Nuttachat Wisittipanit

Generally, transportation costs account for approximately half of the total operation expenses of a logistics firm. Therefore, any effort to optimize the planning of vehicle routing would be substantially beneficial to the company. This study focuses on a postman delivery routing problem of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In this study, two metaheuristic methods—particle swarm optimization (PSO) and differential evolution (DE)—were applied with particular solution representation to find delivery routings with minimum travel distances. The performances of PSO and DE were compared along with those from current practices. The results showed that PSO and DE clearly outperformed the actual routing of the current practices in all the operational days examined. Moreover, DE performances were notably superior to those of PSO.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hongtao Ye ◽  
Wenguang Luo ◽  
Zhenqiang Li

This paper presents an analysis of the relationship of particle velocity and convergence of the particle swarm optimization. Its premature convergence is due to the decrease of particle velocity in search space that leads to a total implosion and ultimately fitness stagnation of the swarm. An improved algorithm which introduces a velocity differential evolution (DE) strategy for the hierarchical particle swarm optimization (H-PSO) is proposed to improve its performance. The DE is employed to regulate the particle velocity rather than the traditional particle position in case that the optimal result has not improved after several iterations. The benchmark functions will be illustrated to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document