The response of Nonionella iridea and other benthic foraminifera to “fresh” organic matter enrichment and physical disturbance

2015 ◽  
Vol 120 ◽  
pp. 20-30 ◽  
Author(s):  
Christopher James Duffield ◽  
Silvia Hess ◽  
Karl Norling ◽  
Elisabeth Alve
2019 ◽  
Author(s):  
Eleonora Fossile ◽  
Maria Pia Nardelli ◽  
Arbia Jouini ◽  
Bruno Lansard ◽  
Antonio Pusceddu ◽  
...  

Abstract. The rapid response of benthic foraminifera to environmental factors (e.g., organic matter quality and quantity, salinity, pH) and their high fossilisation potential make them promising bio-indicators for the intensity and recurrence of brine formation in Arctic seas. Such approach, however, requires a thorough knowledge of their modern ecology in such extreme settings. To this aim, seven stations along a N–S transect across the Storfjorden (Svalbard archipelago) have been sampled using an interface multicorer. This fjord is an area of intense sea ice formation characterised by the production of Brine-enriched Shelf Waters (BSW) as a result of a recurrent latent-heat polynya. Living (Rose Bengal stained) foraminiferal assemblages were analysed together with geochemical and sedimentological parameters in the top five centimetres of the sediment. Three major biozones were distinguished: (i) the inner fjord dominated by typical glacier proximal calcareous species which opportunistically respond to fresh organic matter inputs; (ii) the deep basins and sill characterised by glacier distal agglutinated faunas. These latter are either dominant because of the mostly refractory nature of organic matter and/or the brine persistence that hampers the growth of calcareous species and/or causes their dissolution. (iii) The outer fjord characterised by typical North Atlantic species due to the intrusion of the North Atlantic water in the Storfjordrenna. The stressful conditions present in the deep basins and sill (i.e. acidic waters and low food quality) result in a high agglutinated/calcareous ratio (A / C). This supports the potential use of the A / C ratio as a proxy for brine persistence and overflow in Storfjorden.


2020 ◽  
Vol 17 (7) ◽  
pp. 1933-1953
Author(s):  
Eleonora Fossile ◽  
Maria Pia Nardelli ◽  
Arbia Jouini ◽  
Bruno Lansard ◽  
Antonio Pusceddu ◽  
...  

Abstract. The rapid response of benthic foraminifera to environmental factors (e.g. organic matter quality and quantity, salinity, pH) and their high fossilisation potential make them promising bio-indicators for the intensity and recurrence of brine formation in Arctic seas. Such an approach, however, requires a thorough knowledge of their modern ecology in such extreme settings. To this aim, seven stations along a north–south transect across the Storfjorden (Svalbard archipelago) have been sampled using an interface multicorer. This fjord is an area of intense sea ice formation characterised by the production of brine-enriched shelf waters (BSW) as a result of a recurrent latent-heat polynya. Living (rose bengal-stained) foraminiferal assemblages were analysed together with geochemical and sedimentological parameters in the top 5 cm of the sediment. Three major biozones were distinguished. (i) The “inner fjord” zone, dominated by typical glacier proximal calcareous species, which opportunistically respond to fresh organic matter inputs. (ii) The “deep basins and sill” zone, characterised by glacier distal agglutinated fauna; these are either dominant because of the mostly refractory nature of organic matter and/or the brine persistence that hampers the growth of calcareous species and/or causes their dissolution. (iii) The “outer fjord” zone, characterised by typical North Atlantic species due to the intrusion of the North Atlantic water in the Storfjordrenna. The stressful conditions present in the deep basins and sill (i.e. acidic waters and low food quality) result in a high agglutinated ∕ calcareous ratio (A∕C). This supports the potential use of the A∕C ratio as a proxy for brine persistence and overflow in Storfjorden.


Author(s):  
S. Vanhove ◽  
H.J. Lee ◽  
M. Beghyn ◽  
D. Van Gansbeke ◽  
S. Brockington ◽  
...  

The metazoan meiobenthos was investigated in an Antarctic coastal sediment (Factory Cove, Signy Island, Antarctica). The fine sands contained much higher abundances compared to major sublittoral sediments worldwide. Classified second after Narrangansett Bay (North Atlantic) they reached numbers of 13 × 106ind m-2. The meiofauna was highly abundant in the surface layers, but densities decreased sharply below 2 cm. Vertical profiles mirrored steep gradients of microbiota, chloropigments and organic matter and were coincident with chemical stratification. Spatial patchiness manifested especially in the surface layer. Nematodes dominated (up to 90%), andAponema, Chromctdorita, Diplolaimella, Daptonema, MicrolaimusandNeochromadoraconstituted almost the entire community. Overall, the nematode fauna showed a strong similarity with fine sand communities elsewhere. The dominant trophic strategies were epistrarum and non-selective deposit feeding, but the applied classification for feeding guild structure of the nematodes of Factory Cove is discussed. High standing stock, low diversity and shallow depth distribution may have occurred because of the high nutritive (chlorophyll exceeded lOOOmgm-2and constituted almost 50% of the organic pool) and reductive character of the benthic environment. These observations must have originated from the substantial input of fresh organic matter from phytoplankton and microphytobenthic production, typical for an Antarctic coastal ecosystem during the austral summer.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jacquelyn N. Cresswell ◽  
Peter J. van Hengstum

Karst subterranean estuaries (KSEs) are created from the two- and three-way mixing of saline groundwater, rain, and oceanic water in the subsurface on carbonate landscapes, and this hydrographic framework promotes unique physical processes, biogeochemical cycling, and biological communities. Here we provide evidence that the source and quantity of particulate organic matter (POM) that is delivered to the benthos strongly correlates to benthic habitat partitioning in the oxygenated marine sectors of KSEs. A dataset of benthic foraminifera at 128 different locations from several large flooded cave systems in Bermuda were compiled and evaluated against common environmental characteristics (e.g., tidal exposure, substrate particle size, bulk organic matter, C:N, total organic carbon, and δ13Corg). Benthic areas receiving more carbon isotopically depleted organic matter sources (mean δ13Corg values < −23.2‰, C:N ratios >11), most likely from the terrestrial surface and some marine plankton, were dominated by Trochammina inflata, Bolivina spp., and Helenina anderseni. In contrast, benthic areas receiving more carbon isotopically enriched organic matter sources (mean δ13Corg values > −21.6‰, C:N ratios <10), most likely from marine plankton transported through marine cave openings cave from adjacent coastal waters, were dominated by Spirophthalmidium emaciatum, Spirillina vivipara, Patellina corrugata, and Rotaliella arctica. The benthic foraminifera most distal from any cave entrances were dominated by taxa also known from the deep-sea (e.g., Rotaliella, Spirophthalmidium) in sediment with the lowest bulk organic matter content (mean: 6%), or taxa that prefer hard substrates and are potentially living attached to cave walls (Patellina, Spirillina). While physical groundwater characteristics (e.g., salinity, dissolved oxygen) are expected drivers of benthic ecosystems in KSEs, these results suggest that POM source, quantity, and delivery mechanisms (e.g., groundwater-seawater circulation mechanisms, terrestrial flux) play an important role in benthic habitat partitioning and the spatial variability of biogeochemical cycles in the oxygenated marine sector of KSEs.


2015 ◽  
Vol 162 ◽  
pp. 99-108 ◽  
Author(s):  
Philipp Böning ◽  
Tim Shaw ◽  
Katharina Pahnke ◽  
Hans-Jürgen Brumsack

MethodsX ◽  
2017 ◽  
Vol 4 ◽  
pp. 55-62 ◽  
Author(s):  
G. Sreenivasulu ◽  
N. Jayaraju ◽  
B.C. Sundara Raja Reddy ◽  
T. Lakshmi Prasad ◽  
K. Nagalakshmi ◽  
...  

2021 ◽  
Author(s):  
Susanne K Woche ◽  
Stefan Dultz ◽  
Robert Mikutta ◽  
Klaus Kaiser ◽  
Georg Guggenberger

<p>Formation of soil microaggregates (SMA) is a surface-driven process and depends on mineral cementing and organic gluing agents. Yet, the role of plants in soil microaggregation by input of fresh organic matter remains little understood. In a mesocosm experiment silty Luvisol topsoil (<250 µm; original soil material) was incubated in absence (bare soil) and presence of plants (Festuca) and water-stable free and occluded SMA were isolated after 4, 12, and 30 weeks and investigated for the surface chemical composition by X-ray photoelectron spectroscopy (XPS) and for wetting properties by contact angle determination.</p><p>Compared to the original soil, the surfaces of both free and occluded SMA tended to smaller O and larger C contents, thus a smaller O/C ratio, along with a slight increase in initial contact angle from about 10° (original soil) to about 20° (SMA). The O/C ratio decreased slightly further from 4 to 12 weeks, especially for bare soil without plants. Slightly greater C contents were detected for occluded than for free SMA, probably hinting at higher retention of organic matter on surfaces of microaggregates entrained in larger soil structures. For bare soil, a slightly greater N content was observed for free SMA while in the presence of Festuca free and occluded SMA had same N contents.</p><p>Regardless of the presence of Festuca, C speciation indicated a lower proportion (in % of total C) of C=O/O-C-O and a higher proportion of C - C/C -  H species for occluded than for free SMA, probably indicating less altered organic matter at the surfaces of occluded SMA. While the proportion of C=O/O-C-O species slightly decreased, that of C- C/C-H species slightly increased towards the end of the incubation. This may hint at some preferences in microbial respiration with respect to C compounds and formation of microbial metabolites. From N speciation a higher ratio between protonated and non-protonated organic N species (N<sub>p</sub>/N<sub>np</sub>) was indicated for Festuca than for bare soil after 4 and for 30 weeks of incubation, i.e., the presence of plants seems to impact N compounds present. The N<sub>p</sub>/N<sub>np </sub>ratio tended to decrease after 30 weeks compared to 4 weeks for both treatments, hinting on changes in N species present.</p><p>In summary, aside some effect on N species present, results indicate rather incubation and SMA origin (free, occluded) than the presence of plants (Festuca) to impact surface chemical composition of the tested SMA. This suggests no defined contribution of plants and their products to formation of 250-53 µm-sized SMA.</p>


2016 ◽  
Vol 62 (No. 8) ◽  
pp. 355-360 ◽  
Author(s):  
L. Hlisnikovský ◽  
G. Mühlbachová ◽  
E. Kunzová ◽  
M. Hejcman ◽  
M. Pechová

The 28-day incubation experiment was carried out to evaluate the impact of the application of digestate (Dig); digestate with straw (DigSt); pig slurry (Slu) and mineral fertilizer (NPK) on Cd, Cu, Mn and Zn availability, on K<sub>2</sub>SO<sub>4</sub>-extractable carbon content and on the soil pH value in long-term contaminated soil. At days three and seven of the experiment, the 0.01 mol/L CaCl<sub>2</sub>-extractable fractions of Cd, Zn and Mn significantly decreased under organic treatments (Dig, DigSt and Slu) with the most pronounced effect under Dig treatment. The NPK treatment caused the increase of risky element concentrations since day 21 of incubation which was accompanied with pH decrease. The contents of 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon were the highest at day 3 and 7 of incubation in organic treatments. The significant correlations between 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon and CaCl<sub>2</sub>-extractable metal concentrations showed a close relationship between fresh organic matter added in organic fertilizers and risky element availability, suggesting that newly added labile organic matter can form temporary ligands with risky elements and release them later following its decomposition.  


2011 ◽  
Vol 8 (6) ◽  
pp. 1539-1550 ◽  
Author(s):  
M. Hahn-Schöfl ◽  
D. Zak ◽  
M. Minke ◽  
J. Gelbrecht ◽  
J. Augustin ◽  
...  

Abstract. Peatland restoration by inundation of drained areas can alter local greenhouse gas emissions as CO2 and CH4. Factors that can influence these emissions include the quality and amount of substrates available for anaerobic degradation processes and the sources and availability of electron acceptors. In order to learn about possible sources of high CO2 and CH4. emissions from a rewetted degraded fen grassland, we performed incubation experiments that tested the effects of fresh plant litter in the flooded peats on pore water chemistry and CO2 and CH4. production and emission. The position in the soil profile of the pre-existing drained peat substrate affected initial rates of anaerobic CO2 production subsequent to flooding, with the uppermost peat layer producing the greatest specific rates of CO2 evolution. CH4 production rates depended on the availability of electron acceptors and was significant only when sulfate concentrations were reduced in the pore waters. Very high specific rates of both CO2 (maximum of 412 mg C d−1 kg−1 C) and CH4 production (788 mg C d−1 kg−1 C) were observed in a new sediment layer that accumulated over the 2.5 years since the site was flooded. This new sediment layer was characterized by overall low C content, but represented a mixture of sand and relatively easily decomposable plant litter from reed canary grass killed by flooding. Samples that excluded this new sediment layer but included intact roots remaining from flooded grasses had specific rates of CO2 (max. 28 mg C d−1 kg−1 C) and CH4 (max. 34 mg C d−1 kg−1 C) production that were 10–20 times lower than for the new sediment layer and were comparable to those of a newly flooded upper peat layer. Lowest rates of anaerobic CO2 and CH4 production (range of 4–8 mg C d−1 kg−1 C and <1 mg C d−1 kg−1 C) were observed when all fresh organic matter sources (plant litter and roots) were excluded. In conclusion, the presence of fresh organic substrates such as plant and root litter originating from plants killed by inundation has a high potential for CH4 production, whereas peat without any fresh plant-derived material is relatively inert. Significant anaerobic CO2 and CH4 production in peat only occurs when some labile organic matter is available, e.g. from remaining roots or root exudates.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Wang ◽  
Thomas W. Boutton ◽  
Wenhua Xu ◽  
Guoqing Hu ◽  
Ping Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document