Mineralogical and geochemical characteristics of the Paleozoic source rocks, Akkas gas field, Western Desert of Iraq: Implications for their origin, maturation and Ordovician-Silurian transition

2020 ◽  
Vol 118 ◽  
pp. 104432 ◽  
Author(s):  
Ibrahim Q. Mohammed ◽  
Sherif Farouk ◽  
Hassan Baioumy ◽  
Naira Magdy Lotfy ◽  
Aboosh Hussain Al-Hadidy
2020 ◽  
Vol 8 (3) ◽  
pp. 315-323
Author(s):  
Falah H. Khalaf Al-jubori ◽  
Akram K. Youkhana ◽  
Srood F. Naqshabandi ◽  
Dyana A. Bayz

The Paleozoic rocks outcropped in northern Iraq (Ora, Chia Zairi section) are biostratigraphically investigated for their microfossils content. Benthonic foraminifera and algal genera characterize the upper part of the section while palynomorphs (Miospores & Acritarchs) dominated the lower part the section which is consist of clastic sediments. The study also include the stratigraphic succession of the section and its correlation to the subsurface sections penetrated in oil and  water wells drilled in the western desert of Iraq in order to determine the regional distribution of the economically important formations, either  as reservoir or as source  rocks for hydrocarbons. Index palynomorphs including many types of Acritarch genera are identified in the Khabour Formation indicate lower Ordovician time (Tremadocian? Arenigian –Llanvirnian: age) The Perispik Formation has been found barren of any type of microfossils and is composed of red clastic rocks. Pollen and Spores are recorded from the "Ore Group"  (Kaista, Ora and Harur Formations )  indicate that these rocks are of Upper Devonian – Lower Carboniferous  (Famennian – Tournaisian age ) .A Large number of  foraminifera and Algal genera are identified in the Chiazairi rocks,these genera and species are indicated the Upper Permian rocks of Thuringian age. The stratigraphic   succession of the Paleozoic section studied in northern Iraq indicate that there is a stratigraphic break represents by missing of the Ga'ara Formation (late Carboniferous –early Permian) and Akkas Formation (Silurian) and the upper part of the Khabour Formation (Upper Ordovician).


GeoArabia ◽  
1998 ◽  
Vol 3 (2) ◽  
pp. 229-248 ◽  
Author(s):  
Adnan A.M. Aqrawi

ABSTRACT A stratigraphic scheme for the Paleozoic of the Southwestern Desert of Iraq is proposed based upon the review of recently published data from several deep wells in the western part of the country and from outcrops in other regions in Iraq. The main formations are described in terms of facies distribution, probable age, regional thickness, and correlations with the well-reported Paleozoic successions of the adjacent countries (e.g. Jordan and Saudi Arabia), as well as with the Thrust Zone of North Iraq. The Paleozoic depositional and tectonic evolution of the Western and Southwestern Deserts of Iraq, particularly during Cambrian, Ordovician and Silurian, shows marked similarity to those of eastern Jordan and northern Saudi Arabia. However, local lithological variations, which are due to Late Paleozoic Hercynian tectonics, characterize the Upper Paleozoic sequences. The Lower Silurian marine “hot” shale, 65 meters thick in the Akkas-1 well in the Western Desert, is believed to be the main Paleozoic source rock in the Western and Southwestern Deserts. Additional potential source rocks in this region could be the black shales of the Ordovician Khabour Formation, the Upper Devonian to Lower Carboniferous Ora Shale Formation, and the lower shaly beds of the Upper Permian Chia Zairi Formation. The main target reservoirs are of Ordovician, Silurian, Carboniferous and Permian ages. Similar reservoirs have recently been reported for the Western Desert of Iraq, eastern Jordan and northern Saudi Arabia. In addition, two main regional seals (Lower Silurian shales and Permian evaporites) of northeastern Arabia extend over most of the Southwestern Desert, together with several other local seals. These considerations render the unexplored Paleozoic Southwestern Desert of Iraq prospective.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Xiaobo Wang ◽  
Caineng Zou ◽  
Jian Li ◽  
Guoqi Wei ◽  
Jianfa Chen ◽  
...  

The Kuche Depression is considered as the most important gas resource potential and gas exploring area with great gas resource potential and prospect in the Tarim Basin. Based on geochemical experimental analyses and comprehensive geological studies, the general geochemical characteristics of molecular and isotope compositions of rare gases as well as hydrocarbon gases and nonhydrocarbon gases are comparatively studied in the Kuche and Southwestern Depressions. Then, their genetic types are separately identified and gas originations are comprehensively discussed. The main results are as follows. (1) Gas fields in the Kuche Depression have a higher methane abundance, accompanied with low N2and CO2abundances, but the Akemomu gas field in the Southwestern Depression has a relatively lower average methane abundance, accompanied with high average N2and CO2abundances. The helium abundance of natural gases in gas fields from the Kuche Depression general has 1 order of magnitude higher than the air value. Comparatively, it has more than 2 orders of magnitude higher than the atmospheric value in the Akemomu gas field from the Southwestern Depression. The neon, argon, krypton, and xenon abundances in both Kuche and Southwestern Depressions are lower than the corresponding air values. (2) Natural gases from gas fields in the Kuche Depression and the Southwestern Depressions are generally typical coal-formed gases. The rare gases in the Kuche Depression have typical crustal genesis, mainly deriving from the radioactive decay of elements in the crust, while in the Akemomu gas field from the Southwestern Depression, the rare gases have main crustal genesis with a proportion of 92.5%, probably accompanied with a little mantled genetic contribution. (3) Natural gases in the Kuche Depression are generally derived from coal measure source rocks of Jurassic and Triassic, which principally originated from Jurassic in strata period and coals in source rock types. The Jurassic source rocks account for 55%-75% and the Triassic source rocks account for 25%-45% approximately, while coals occupy 68% and mudstones occupy 32% separately. Natural gases from the Akemomu gas field in the Southwestern Depression mainly originated from humic mudstones of marine and continental transitional source rocks of Carboniferous to Permian.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongmei Bo ◽  
Lin Jiang ◽  
Wen Zhao ◽  
Youlu Jiang ◽  
Hua Liu ◽  
...  

The identification of the oil-source correlation plays a significant role in petroleum exploration and development. In this study, we identify the oil-source correlation by a hierarchical cluster analysis method combined with traditional methods. The results shed light on the oil-source correlation in Minfeng area and revealed the oil migration and accumulation process. The crude oil in different structural belts and different horizons has different geochemical characteristics. According to the four types of crude oil and their planner distribution, it was considered that the crude oil mainly migrates along with favorable sand bodies and unconformity surfaces in the lateral direction and then charged and accumulated in the glutenite of Sha3 and Sha4 members since the area from sag to Yan Jia Oil and the gas field was lacking of oil source faults. Further analysis shows that the traps of fault blocks in Yong’anzhen are formed in the same phase, while the crude oil generated in the early stage is charged and accumulated in the fault block of the near source. Along with increasing of the buried depth of source rocks, the overlying source rocks gradually entered into the hydrocarbon generation phase, when crude oil started to charge in the fault blocks farther away.


2016 ◽  
Vol 35 (1) ◽  
pp. 103-121 ◽  
Author(s):  
Wenxue Han ◽  
Shizhen Tao ◽  
Guoyi Hu ◽  
Weijiao Ma ◽  
Dan Liu ◽  
...  

Light hydrocarbon has abundant geochemical information, but there are few studies on it in Shenmu gas field. Taking Upper Paleozoic in Shenmu gas field as an example, authors use gas chromatography technology to study light hydrocarbon systematically. The results show that (1) The Shenmu gas field is mainly coal-derived gas, which is mixed by partial oil-derived gas due to the experiment data. (2) Based on K1, K2 parameter and Halpern star chart, the Upper Paleozoic gas in Shenmu gas field belongs to the same petroleum system and the depositional environment of natural gas source rocks should be homologous. (3) The source rocks are mainly from terrestrial higher plant origins and belong to swamp facies humic due to methyl cyclohexane index and Mango parameter intersection chart, which excluded the possibility of the Upper Paleozoic limestone as source rocks. (4) The isoheptane ranges from 1.45 to 2.69 with an average of 2.32, and n-heptane ranges from 9.48 to 17.68% with an average of 11.71%, which is below 20%. The maturity of Upper Paleozoic gas in Shenmu gas field is low-normal stage, which is consistent with Ro data. (5) The Upper Paleozoic natural gas in the Shenmu gas field did not experience prolonged migration or secondary changes, thus can be analyzed by light hydrocarbon index precisely.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Khamis Naba Sayl ◽  
Sadeq Oleiwi Sulaiman ◽  
Ammar Hatem Kamel ◽  
Nur Shazwani Muhammad ◽  
Jazuri Abdullah ◽  
...  

Currently, desertification is a major problem in the western desert of Iraq. The harsh nature, remoteness, and size of the desert make it difficult and expensive to monitor and mitigate desertification. Therefore, this study proposed a comprehensive and cost-effective method, via the integration of geographic information systems (GISs) and remote sensing (RS) techniques to estimate the potential risk of desertification, to identify the most vulnerable areas and determine the most appropriate sites for rainwater conservation. Two indices, namely, the Normalized Differential Vegetation Index (NDVI) and Land Degradation Index (LDI), were used for a cadastral assessment of land degradation. The findings of the combined rainwater harvesting appropriateness map, and the maps of NDVI and LDI changes found that 65% of highly suitable land for rainwater harvesting lies in the large change and 35% lies in the small change of NDVI, and 85% of highly suitable land lies in areas with a moderate change and 12% lies in strong change of LDI. The adoption of the weighted linear combination (WLC) and Boolean methods within the GIS environment, and the analysis of NDVI with LDI changes can allow hydrologists, decision-makers, and planners to quickly determine and minimize the risk of desertification and to prioritize the determination of suitable sites for rainwater harvesting.


Sign in / Sign up

Export Citation Format

Share Document