Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)

2014 ◽  
Vol 84 (1-2) ◽  
pp. 44-55 ◽  
Author(s):  
Achille Ciappa ◽  
Salvatore Costabile
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Chimienti ◽  
Diana De Padova ◽  
Maria Adamo ◽  
Michele Mossa ◽  
Antonella Bottalico ◽  
...  

AbstractThe effects of global warming have been addressed on coral reefs in tropical areas, while it is still unclear how coral forests are reacting, particularly at temperate latitudes. Here we show how mesophotic coral forests are affected by global warming in the Mediterranean Sea. We highlight how the current warming trend is causing the lowering of the thermocline and it is enhancing mucilaginous blooms. These stressors are facilitating a massive macroalgal epibiosis on living corals, here reported for the first time from different areas in the Western and Central Mediterranean Sea. We provide a focus of this phenomenon at Tremiti Islands Marine Protected Area (Adriatic Sea), were the density of the endemic red gorgonian Paramuricea clavata decreased of up to 47% in 5 years, while up to the 96% of the living corals showed signs of stress and macroalgal epibiosis. Only populations deeper than 60 m depth were not touched by this emerging phenomenon. Spot observations performed at Tuscan Archipelago and Tavolara Marine Protected Area (Tyrrhenian Sea) suggest that this this combination of stressors is likely widespread at basin scale.


Hydrobiologia ◽  
2017 ◽  
Vol 821 (1) ◽  
pp. 153-172 ◽  
Author(s):  
G. Garofalo ◽  
S. Fezzani ◽  
F. Gargano ◽  
G. Milisenda ◽  
O. Ben Abdallah ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2188
Author(s):  
Salvatore Marullo ◽  
Jaime Pitarch ◽  
Marco Bellacicco ◽  
Alcide Giorgio di Sarra ◽  
Daniela Meloni ◽  
...  

Air–sea heat fluxes are essential climate variables, required for understanding air–sea interactions, local, regional and global climate, the hydrological cycle and atmospheric and oceanic circulation. In situ measurements of fluxes over the ocean are sparse and model reanalysis and satellite data can provide estimates at different scales. The accuracy of such estimates is therefore essential to obtain a reliable description of the occurring phenomena and changes. In this work, air–sea radiative fluxes derived from the SEVIRI sensor onboard the MSG satellite and from ERA5 reanalysis have been compared to direct high quality measurements performed over a complete annual cycle at the ENEA oceanographic observatory, near the island of Lampedusa in the Central Mediterranean Sea. Our analysis reveals that satellite derived products overestimate in situ direct observations of the downwelling short-wave (bias of 6.1 W/m2) and longwave (bias of 6.6 W/m2) irradiances. ERA5 reanalysis data show a negligible positive bias (+1.0 W/m2) for the shortwave irradiance and a large negative bias (−17 W/m2) for the longwave irradiance with respect to in situ observations. ERA5 meteorological variables, which are needed to calculate the air–sea heat flux using bulk formulae, have been compared with in situ measurements made at the oceanographic observatory. The two meteorological datasets show a very good agreement, with some underestimate of the wind speed by ERA5 for high wind conditions. We investigated the impact of different determinations of heat fluxes on the near surface sea temperature (1 m depth), as determined by calculations with a one-dimensional numerical model, the General Ocean Turbulence Model (GOTM). The sensitivity of the model to the different forcing was measured in terms of differences with respect to in situ temperature measurements made during the period under investigation. All simulations reproduced the true seasonal cycle and all high frequency variabilities. The best results on the overall seasonal cycle were obtained when using meteorological variables in the bulk formulae formulations used by the model itself. The derived overall annual net heat flux values were between +1.6 and 40.4 W/m2, depending on the used dataset. The large variability obtained with different datasets suggests that current determinations of the heat flux components and, in particular, of the longwave irradiance, need to be improved. The ENEA oceanographic observatory provides a complete, long-term, high resolution time series of high quality in situ observations. In the future, more similar sites worldwide will be needed for model and satellite validations and to improve the determination of the air–sea exchange and the understanding of related processes.


2019 ◽  
Vol 15 (2) ◽  
pp. 153-164 ◽  
Author(s):  
Sara Innangi ◽  
Gabriella Di Martino ◽  
Claudia Romagnoli ◽  
Renato Tonielli

2016 ◽  
Vol 675 ◽  
pp. 69-90 ◽  
Author(s):  
A. Polonia ◽  
L. Torelli ◽  
A. Artoni ◽  
M. Carlini ◽  
C. Faccenna ◽  
...  

Hydrobiologia ◽  
2017 ◽  
Vol 821 (1) ◽  
pp. 151-151 ◽  
Author(s):  
Giacomo Milisenda ◽  
Germana Garofalo ◽  
Samia Fezzani ◽  
Okbi Rjeibi ◽  
Othman Jarboui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document