Pd nanoparticles fabricated cyano-functionalized mesoporous SBA-15: A novel heterogeneous catalyst for Suzuki–Miyaura coupling reactions and anti-human lung cancer effects

2021 ◽  
Vol 257 ◽  
pp. 123375
Author(s):  
Junling Wang ◽  
Linlin Wang ◽  
Xiaoping Cai ◽  
Bikash Karmakar ◽  
Mohammad Mahdi Zangeneh ◽  
...  
2019 ◽  
Vol 19 (12) ◽  
pp. 1454-1462 ◽  
Author(s):  
Nana Niu ◽  
Tingli Qu ◽  
Jinfang Xu ◽  
Xiaolin Lu ◽  
Graham J. Bodwell ◽  
...  

Background: Lung cancer is one of the most prevalent malignancies and thus the development of novel therapeutic agents for managing lung cancer is imperative. Tetrandrine, a bis-benzyltetrahydroisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, has been found to exert cytotoxic effects on cancerous cells. Methods: A series of 5-alkynyltetrandrine derivatives was synthesized via the Sonogashira cross-coupling reactions and evaluated as potential anti-tumor agents. The anti-tumor activities of 12 compounds on lung cancer cells (A549) were evaluated using the MTT method. The population of apoptotic cells was measured using a TUNEL assay. Real-time PCR quantified the gene expression levels of Bcl-2, Bax, survivin and caspase-3. The content of Cyt-C was detected using a Human Cyt-C ELISA kit. Results: Most of these compounds exhibited better activities than tetrandrine itself on A549 cells. Among them, compound 7 showed the highest cytotoxicity among the tested compounds against human lung adenocarcinoma A549 cells with an IC50 of 2.94 µM. Preliminary mechanistic studies indicated that compound 7 induced apoptosis of human lung cancer A549 cells and increased the level of the proapoptotic gene Bax, release of Cyt-C from mitochondria and activation of caspase-3 genes. Conclusion: The results suggest that compound 7 exerts its antitumor activity against A549 cells through the induction of the intrinsic (mitochondrial) apoptotic pathway. These findings will contribute to the future design of more effective anti-tumor agents in lung cancer therapy.


Author(s):  
Benjamin Gaston ◽  
Nadzeya Marozkina

Author(s):  
Geyu Liang ◽  
Xikai Wang ◽  
Yanqiu Zhang ◽  
Yanyun Fu ◽  
Lihong Yin ◽  
...  

2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Lingyan Wang ◽  
Jiayun Hou ◽  
Minghuan Zheng ◽  
Lin Shi

Actinidia Chinensis Planch roots (acRoots) are used to treat many cancers, although the anti-tumor mechanism by which acRoots inhibit cancer cell growth remains unclear. The present study aims at investigating inhibitory effects of acRoots on human lung cancer cells and potential mechanisms. Our data demonstrate that the inhibitory effects of acRoots on lung cancer cells depend on genetic backgrounds and phenotypes of cells. We furthermore found the expression of metabolism-associated gene profiles varied between acRoots-hypersensitive (H460) or hyposensitive lung cancer cells (H1299) after screening lung cancer cells with different genetic backgrounds. We selected retinoic acid receptor beta (RARB) as the core target within metabolism-associated core gene networks and evaluated RARB changes and roles in cells treated with acRoots at different concentrations and timeframes. Hypersensitive cancer cells with the deletion of RARB expression did not response to the treatment with acRoots, while RARB deletion did not change effects of acRoots on hyposensitive cells. Thus, it seems that RARB as the core target within metabolism-associated networks plays important roles in the regulation of lung cancer cell sensitivity to acRoots.


2011 ◽  
Vol 31 (10) ◽  
pp. 1091-1095
Author(s):  
Xiao-lin LI ◽  
Yan-fang ZHANG ◽  
Kai TANG ◽  
Ying TANG ◽  
Ruo-bing JIN ◽  
...  

Author(s):  
Mohammad Lalmoddin Mollah ◽  
Jae-Chan Song ◽  
Chang-Ho Park ◽  
Gee-Dong Lee ◽  
Joo-Heon Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document