receptor beta
Recently Published Documents


TOTAL DOCUMENTS

1794
(FIVE YEARS 243)

H-INDEX

94
(FIVE YEARS 8)

Author(s):  
Guitti Pourdowlat ◽  
Maryam Parvizi ◽  
Shogher Boyadjian ◽  
Masoud Shamaei ◽  
Mihan Pourabdollah

Background: Estrogen receptor beta (ERβ) is a potential target for cancer therapy as a tumor suppressor. Malignant pleural mesothelioma (MPM) is a rare but fatal cancer. This study tries to estimate the incidence of ERβ expression in the various subtypes of MPM tumors. Methods and Materials: In a retrospective study performed at a pulmonary tertiary referral hospital, formalin-fixed paraffin-embedded human tissues of 46 definitive MPM were evaluated for expression of ERβ by immunohistochemistry. Results: ERβ was detected in 14 cases (30.4%) out of the total 46 patients with a mean age of 58.08±11.59 SD, including 33 (71.7%) males. There was no statistically significant difference in patients with positive ERβ staining versus negative cases in age and sex (P >0.05). MPM subtypes included 36 (78.2%) cases of epithelioid mesothelioma, 3 (6.5%) cases of sarcomatoid, 5 (10.8%) cases of biphasic, and 2 (4.3%) cases of desmoplastic subtype. ERβ expression was observed only in epithelioid (11 of total 36 cases) and biphasic (3 of total 5 cases) tumors. There was no significant difference in the incidence of ERβ expression in different subtypes of malignant pleural mesothelioma. Statistical analysis shows a significant difference in the expression of ERβ in the epithelioid subtype (with a more favorable prognosis) versus non-epithelioid subtypes (with poor prognosis, including sarcomatoid, desmoplastic, and biphasic) (P = 0.024). Discussion and Conclusion: Considering the higher proportion of the epithelioid type of MPM with ERβ expression, this highlights the role of ERβ in target therapy of MPM tumor, especially in the epithelioid subtype with a more favorable prognosis. A better understanding of the pathology of mesothelioma will eventually contribute to the development of therapies beyond the existing therapeutic platform.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Aviv Omer ◽  
Ayelet Peres ◽  
Oscar L Rodriguez ◽  
Corey T Watson ◽  
William Lees ◽  
...  

Abstract Background T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance. The chromosomal loci encoding for the variable regions of TCRs and BCRs are challenging to decipher due to repetitive elements and undocumented structural variants. Methods To confront this challenge, AIRR-seq-based methods have recently been developed for B cells, enabling genotype and haplotype inference and discovery of undocumented alleles. However, this approach relies on complete coverage of the receptors’ variable regions, whereas most T cell studies sequence a small fraction of that region. Here, we adapted a B cell pipeline for undocumented alleles, genotype, and haplotype inference for full and partial AIRR-seq TCR data sets. The pipeline also deals with gene assignment ambiguities, which is especially important in the analysis of data sets of partial sequences. Results From the full and partial AIRR-seq TCR data sets, we identified 39 undocumented polymorphisms in T cell receptor Beta V (TRBV) and 31 undocumented 5 ′ UTR sequences. A subset of these inferences was also observed using independent genomic approaches. We found that a single nucleotide polymorphism differentiating between the two documented T cell receptor Beta D2 (TRBD2) alleles is strongly associated with dramatic changes in the expressed repertoire. Conclusions We reveal a rich picture of germline variability and demonstrate how a single nucleotide polymorphism dramatically affects the composition of the whole repertoire. Our findings provide a basis for annotation of TCR repertoires for future basic and clinical studies.


2022 ◽  
pp. 110246
Author(s):  
Rubí Hernández-Rojas ◽  
Carolina Jiménez-Arellano ◽  
Marisol de la Fuente-Granada ◽  
David Ordaz-Rosado ◽  
Rocío García-Becerra ◽  
...  

Leukemia ◽  
2021 ◽  
Author(s):  
Anne Charlet ◽  
Max Kappenstein ◽  
Philip Keye ◽  
Kathrin Kläsener ◽  
Cornelia Endres ◽  
...  

AbstractFLT3-ITD is the most predominant mutation in AML being expressed in about one-third of AML patients and is associated with a poor prognosis. Efforts to better understand FLT3-ITD downstream signaling to possibly improve therapy response are needed. We have previously described FLT3-ITD-dependent phosphorylation of CSF2RB, the common receptor beta chain of IL-3, IL-5, and GM-CSF, and therefore examined its significance for FLT3-ITD-dependent oncogenic signaling and transformation. We discovered that FLT3-ITD directly binds to CSF2RB in AML cell lines and blasts isolated from AML patients. A knockdown of CSF2RB in FLT3-ITD positive AML cell lines as well as in a xenograft model decreased STAT5 phosphorylation, attenuated cell proliferation, and sensitized to FLT3 inhibition. Bone marrow from CSF2RB-deficient mice transfected with FLT3-ITD displayed decreased colony formation capacity and delayed disease onset together with increased survival upon transplantation into lethally irradiated mice. FLT3-ITD-dependent CSF2RB phosphorylation required phosphorylation of the FLT3 juxtamembrane domain at tyrosines 589 or 591, whereas the ITD insertion site and sequence were of no relevance. Our results demonstrate that CSF2RB participates in FLT3-ITD-dependent oncogenic signaling and transformation in vitro and in vivo. Thus, CSF2RB constitutes a rational treatment target in FLT3-ITD-positive AML.


2021 ◽  
Vol 124 ◽  
pp. 102723
Author(s):  
Jeroen F.J. Bogie ◽  
Tim Vanmierlo ◽  
Jasmine Vanmol ◽  
Silke Timmermans ◽  
Jo Mailleux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document