Investigation of machining parameters of super hardened tool in micro electrical discharge machining

Author(s):  
D. Elil Raja ◽  
K. Gnanasekaran ◽  
K. Ramesh ◽  
S. Prathap Singh ◽  
S. Jagadeesh
Author(s):  
Guohui Cao ◽  
Guanxin Chi ◽  
Baidong Jin ◽  
Zhenlong Wang ◽  
Wansheng Zhao

Proposed a new process technology of micro electrical discharge machining (EDM) beyond the traditional EDM concept. This method can deposit the brass wire tool electrode on the workpiece surface by pulse discharges between anode and cathode in air. At first, the basic machining parameters, which realize micro electrical discharge deposition, are prejudged according to the discharge phenomena in air and EDM basic theory. Afterwards, a lot of experiments were carried on an ordinary sinking-EDM machine tool. The results of experiments show that wire tool electrode materials, brass, can be deposited on steel workpiece surface. The diameter of micro fabricated cylinders is 100–240 microns, and the height is 1000–7350 microns. On some special machining parameters, a micro spiral structure can be deposited also, which is 100 micron in thread diameter and more than ten cycles. Excepting lots of experiments, the structure and properties of deposited substance were analyzed by SEM, spectroscopy analysis and micro hardness meter and so on. The results of analyzing the deposited cylinders show that the structure is multi-layer, which is beneficial for the further study of 3D scanning machining. The hardness is a little higher than the original metal. In this depositing process, element Zn of tool electrode is almost oxidized to ZnO. Element Cu is not oxidized, existing as solid Cu. Because the reactivity of Cu is weaker than that of Zn.


2019 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Christina Apostolopoulou ◽  
Laith Abdullah Al-Juboori

The micro-Electrical Discharge Machining (micro-EDM) is a non-conventional machining process which utilizes electro-thermal, non-contact effects to remove material from the workpiece. Micro-EDM is controlled by many machining parameters and its accuracy is evaluated by performance measures. It is employed when high accuracy and precision are required, especially when difficult-to-machine materials, like titanium alloy Ti6Al4V, are involved. Given the tremendous applications of Ti6Al4V in biomedical devices, automotive, aerospace and microelectromechanical systems, it is valuable to examine thoroughly the micro-EDM of Ti6Al4V component. This work reports a systematic mapping study of 36 papers published in journals and proceedings of conferences in the nearly two decades 2000-2018. First, we divide the papers into categories according to the various optimization techniques applied for the enhancement of micro-EDM machining process of Ti6Al4V component. Then, we discuss the techniques most used and give insight into the current research trends in micro-EDM. Accompanying comments about the use of the mentioned studies for teaching purposes may be of considerable interest for educators.


2013 ◽  
Vol 1 (3) ◽  
Author(s):  
Xuejie Guo ◽  
Zuyuan Yu ◽  
Zhongwei Lv ◽  
Jianzhong Li ◽  
Wataru Natsu

Microholes are widely used in industrial products, such as engine nozzles and filters for biomedical industry. Electrical discharge machining (EDM) is one of processes to drill microholes in alloy with high aspect ratio. However, the achievable aspect ratio of a microhole by micro-EDM is limited. To improve the aspect ratio of a microhole drilled by micro-EDM, the planetary movement of electrode is applied during machining. It was found that the machining efficiency of microhole drilling can be further improved by proper setting of planetary movement of electrode, such as the electrode feed rate and movement speed of electrode in XY plane. In this paper, a theoretical model is proposed to optimize parameters of the planetary movement of electrode. Microholes are drilled aided with planetary movement using different machining parameters to verify the model. Experimental results agree with theoretical values, which indicate the validity of the proposed model. This model provides certain theoretical basis for machining parameter selection when microholes are drilled aided with planetary movement.


2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2018 ◽  
Vol 51 ◽  
pp. 198-207 ◽  
Author(s):  
Rimao Zou ◽  
Zuyuan Yu ◽  
Chengyang Yan ◽  
Jianzhong Li ◽  
Xin Liu ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


Sign in / Sign up

Export Citation Format

Share Document