Fabrication of multilayer composite hollow fiber membrane comprising NH2-MIL-125 (Ti) for CO2 removal from CH4

Author(s):  
Shahidah Zakariya ◽  
Yin Fong Yeong ◽  
Norwahyu Jusoh ◽  
Lian See Tan
Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 496
Author(s):  
Sayali Ramdas Chavan ◽  
Patrick Perré ◽  
Victor Pozzobon ◽  
Julien Lemaire

Recently, membrane contactors have gained more popularity in the field of CO2 removal; however, achieving high purity and competitive recovery for poor soluble gas (H2, N2, or CH4) remains elusive. Hence, a novel process for CO2 removal from a mixture of gases using hollow fiber membrane contactors is investigated theoretically and experimentally. A theoretical model is constructed to show that the dissolved residual CO2 hinders the capacity of the absorbent when it is regenerated. This model, backed up by experimental investigation, proves that achieving a purity > 99% without consuming excessive chemicals or energy remains challenging in a closed-loop system. As a solution, a novel strategy is proposed: the pH Swing Absorption which consists of manipulating the acido–basic equilibrium of CO2 in the absorption and desorption stages by injecting moderate acid and base amount. It aims at decreasing CO2 residual content in the regenerated absorbent, by converting CO2 into its ionic counterparts (HCO3− or CO32−) before absorption and improving CO2 degassing before desorption. Therefore, this strategy unlocks the theoretical limitation due to equilibrium with CO2 residual content in the absorbent and increases considerably the maximum achievable purity. Results also show the dependency of the performance on operating conditions such as total gas pressure and liquid flowrate. For N2/CO2 mixture, this process achieved a nitrogen purity of 99.97% with a N2 recovery rate of 94.13%. Similarly, for H2/CO2 mixture, a maximum H2 purity of 99.96% and recovery rate of 93.96% was obtained using this process. Moreover, the proposed patented process could potentially reduce energy or chemicals consumption.


2013 ◽  
Vol 52 (50) ◽  
pp. 18059-18070 ◽  
Author(s):  
Zhen Wang ◽  
Mengxiang Fang ◽  
Hai Yu ◽  
Chiao-Chien Wei ◽  
Zhongyang Luo

2020 ◽  
Vol 12 (6) ◽  
pp. 2207
Author(s):  
Benjamin Lukitsch ◽  
Paul Ecker ◽  
Martin Elenkov ◽  
Christoph Janeczek ◽  
Bahram Haddadi ◽  
...  

Computational fluid dynamics (CFD) provides a flexible tool for investigation of separation processes within membrane hollow fiber modules. By enabling a three-dimensional and time dependent description of the corresponding transport phenomena, very detailed information about mass transfer or geometrical influences can be provided. The high level of detail comes with high computational costs, especially since species transport simulations must discretize and resolve steep gradients in the concentration polarization layer at the membrane. In contrast, flow simulations are not required to resolve these gradients. Hence, there is a large gap in the scale and complexity of computationally feasible geometries when comparing flow and species transport simulations. A method, which tries to cover the mentioned gap, is presented in the present article. It allows upscaling of the findings of species transport simulations, conducted for reduced geometries, on the geometrical scales of flow simulations. Consequently, total transmembrane transport of complete modules can be numerically predicted. The upscaling method does not require any empirical correlation to incorporate geometrical characteristics but solely depends on results acquired by CFD flow simulations. In the scope of this research, the proposed method is explained, conducted, and validated. This is done by the example of CO2 removal in a prototype hollow fiber membrane oxygenator.


2001 ◽  
Vol 194 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Yongtaek Lee ◽  
Richard D. Noble ◽  
Bong-Yeol Yeom ◽  
You-In Park ◽  
Kew-Ho Lee

Sign in / Sign up

Export Citation Format

Share Document