modeling and simulation
Recently Published Documents


TOTAL DOCUMENTS

15077
(FIVE YEARS 2645)

H-INDEX

107
(FIVE YEARS 17)

2022 ◽  
Vol 168 ◽  
pp. 108633
Author(s):  
Xudong Zheng ◽  
Taiwei Yang ◽  
Zhang Chen ◽  
Xueqian Wang ◽  
Bin Liang ◽  
...  

2022 ◽  
Vol 166 ◽  
pp. 108689
Author(s):  
Xianshan Zhang ◽  
Peiwei Sun ◽  
Leilei Qiu ◽  
Songmao Pu ◽  
Xinyu Wei

2022 ◽  
Vol 32 (1) ◽  
pp. 1-4
Author(s):  
Romolo Marotta

The artifact evaluated in this report is relevant to the article. In fact, it allows us to run the experiments and reproduce figures, and the dependencies are documented. The process to regenerate data presented in the article completes correctly, and the results are reproducible. Additionally, the authors have uploaded their artifact on permanent repositories, which ensures a long-term retention. This article can thus receive the Artifacts Available , Artifacts Evaluated–Reusable , and Results Reproduced badges.


2022 ◽  
Vol 32 (1) ◽  
pp. 1-26
Author(s):  
Oliver Reinhardt ◽  
Tom Warnke ◽  
Adelinde M. Uhrmacher

In agent-based modeling and simulation, discrete-time methods prevail. While there is a need to cover the agents’ dynamics in continuous time, commonly used agent-based modeling frameworks offer little support for discrete-event simulation. Here, we present a formal syntax and semantics of the language ML3 (Modeling Language for Linked Lives) for modeling and simulating multi-agent systems as discrete-event systems. The language focuses on applications in demography, such as migration processes, and considers this discipline’s specific requirements. These include the importance of life courses being linked and the age-dependency of activities and events. The developed abstract syntax of the language combines the metaphor of agents with guarded commands. Its semantics is defined in terms of Generalized Semi-Markov Processes. The concrete language has been realized as an external domain-specific language. We discuss implications for efficient simulation algorithms and elucidate benefits of formally defining domain-specific languages for modeling and simulation.


2022 ◽  
Author(s):  
Shan Suthaharan

This paper presents a computational framework that helps enhance the confidentiality protection of communication in cybersecurity by leveraging the scientific properties of the Tamil language and the advanced encryption standard (AES). It defines a product set of vowels and consonants sounds of the Tamil language and reveals its connection to Hardy-Ramanujan prime factors and Tamil letters as a one-to-one function. It also reveals that the letters of the Tamil alphabet, combined with the digits from 1 to 9, form a Galois field of 2^8 over an irreducible polynomial of degree 8. In addition, it implements these two mathematical properties and builds an encoder for the AES algorithm to transform the Tamil texts to their hexadecimal states, and replace the pre-round transformation module of AES. It empirically shows that the Tamil-based encoder enhances the cryptographic strength of the AES algorithm at every step of its encryption flow. The cryptographic strength is measured by the runs test scores of the bit sequences of the ciphers of AES and compared with that of the English language. This modeling and simulation approach concludes that the Tamil-based encryption enhances the cryptographic strength of AES than English-based encryption.


2022 ◽  
Vol 3 ◽  
Author(s):  
Gabriela Xavier de Oliveira ◽  
Jéssica Oliveira de Brito Lira ◽  
Humberto Gracher Riella ◽  
Cíntia Soares ◽  
Natan Padoin

From the pharmaceutical industry’s point of view, photoredox catalysis has emerged as a powerful tool in the field of the synthesis of added-value compounds. With this method, it is possible to excite the catalyst by the action of light, allowing electron transfer processes to occur and, consequently, oxidation and reduction reactions. Thus, in association with photoredox catalysis, microreactor technology and continuous flow chemistry also play an important role in the development of organic synthesis processes, as this technology offers high yields, high selectivity and reduced side reactions. However, there is a lack of a more detailed understanding of the photoredox catalysis process, and computational tools based on computational fluid dynamics (CFD) can be used to deal with this and boost to reach higher levels of accuracy to continue innovating in this area. In this review, a comprehensive overview of the fundamentals of photoredox catalysis is provided, including the application of this technology for the synthesis of added-value chemicals in microreactors. Moreover, the advantages of the continuous flow system in comparison with batch systems are pointed out. It was also demonstrated how modeling and simulation using computational fluid dynamics (CFD) can be critical for the design and optimization of microreactors applied to photoredox catalysis, so as to better understand the reagent interactions and the influence of light in the reaction medium. Finally, a discussion about the future prospects of photoredox reactions considering the complexity of the process is presented.


Sign in / Sign up

Export Citation Format

Share Document