scholarly journals Spectral rigidity for spherically symmetric manifolds with boundary

Author(s):  
Maarten V. de Hoop ◽  
Joonas Ilmavirta ◽  
Vitaly Katsnelson
Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.


1965 ◽  
Vol 6 (1) ◽  
pp. 1-5 ◽  
Author(s):  
P. G. Bergmann ◽  
M. Cahen ◽  
A. B. Komar

1997 ◽  
Vol 12 (27) ◽  
pp. 4831-4835 ◽  
Author(s):  
K. S. Virbhadra

We show that the well-known most general static and spherically symmetric exact solution to the Einstein-massless scalar equations given by Wyman is the same as one found by Janis, Newman and Winicour several years ago. We obtain the energy associated with this space–time and find that the total energy for the case of the purely scalar field is zero.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Evgeniya V. Goloveshkina ◽  
Leonid M. Zubov

The concept of a spherically symmetric second-rank tensor field is formulated. A general representation of such a tensor field is derived. Results related to tensor analysis of spherically symmetric fields and their geometric properties are presented. Using these results, a formulation of the spherically symmetric problem of the nonlinear theory of dislocations is given. For an isotropic nonlinear elastic material with an arbitrary spherically symmetric distribution of dislocations, this problem is reduced to a nonlinear boundary value problem for a system of ordinary differential equations. In the case of an incompressible isotropic material and a spherically symmetric distribution of screw dislocations in the radial direction, an exact analytical solution is found for the equilibrium of a hollow sphere loaded from the outside and from the inside by hydrostatic pressures. This solution is suitable for any models of an isotropic incompressible body, i. e., universal in the specified class of materials. Based on the obtained solution, numerical calculations on the effect of dislocations on the stress state of an elastic hollow sphere at large deformations are carried out.


Sign in / Sign up

Export Citation Format

Share Document