two body problem
Recently Published Documents


TOTAL DOCUMENTS

557
(FIVE YEARS 61)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 43 (1) ◽  
pp. 21-80
Author(s):  
Y. N. Chelnokov

AbstractThis paper is a review, which focuses on our work, while including an analysis of many works of other researchers in the field of quaternionic regularization. The regular quaternion models of celestial mechanics and astrodynamics in the Kustaanheimo-Stiefel (KS) variables and Euler (Rodrigues-Hamilton) parameters are analyzed. These models are derived by the quaternion methods of mechanics and are based on the differential equations of the perturbed spatial two-body problem and the perturbed spatial central motion of a point particle. This paper also covers some applications of these models. Stiefel and Scheifele are known to have doubted that quaternions and quaternion matrices can be used efficiently to regularize the equations of celestial mechanics. However, the author of this paper and other researchers refuted this point of view and showed that the quaternion approach actually leads to efficient solutions for regularizing the equations of celestial mechanics and astrodynamics.This paper presents convenient geometric and kinematic interpretations of the KS transformation and the KS bilinear relation proposed by the present author. More general (compared with the KS equations) quaternion regular equations of the perturbed spatial two-body problem in the KS variables are presented. These equations are derived with the assumption that the KS bilinear relation was not satisfied. The main stages of the quaternion theory of regularizing the vector differential equation of the perturbed central motion of a point particle are presented, together with regular equations in the KS variables and Euler parameters, derived by the aforementioned theory. We also present the derivation of regular quaternion equations of the perturbed spatial two-body problem in the Levi-Civita variables and the Euler parameters, developed by the ideal rectangular Hansen coordinates and the orientation quaternion of the ideal coordinate frame.This paper also gives new results using quaternionic methods in the perturbed spatial restricted three-body problem.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2384
Author(s):  
Riccardo Sturani

While being as old as general relativity itself, the gravitational two-body problem has never been under so intense investigation as it is today, spurred by both phenomenological and theoretical motivations. The observations of gravitational waves emitted by compact binary coalescences bear the imprint of the source dynamics, and as the sensitivity of detectors improve over years, more accurate modeling is being required. The analytic modeling of classical gravitational dynamics has been enriched in this century by powerful methods borrowed from field theory. Despite being originally developed in the context of fundamental particle quantum scatterings, their applications to classical, bound system problems have shown that many features usually associated with quantum field theory, such as, e.g., divergences and counterterms, renormalization group, loop expansion, and Feynman diagrams, have only to do with field theory, be it quantum or classical. The aim of this work is to present an overview of this approach, which models massive astrophysical objects as nonrelativistic particles and their gravitational interactions via classical field theory, being well aware that while the introductory material in the present article is meant to represent a solid background for newcomers in the field, the results reviewed here will soon become obsolete, as this field is undergoing rapid development.


Author(s):  
jose antonio lópez ortí ◽  
Vicemte Agost Gómez ◽  
Miguel Barreda rochera

In the present work, we define a new anomaly, $\Psi$, termed semifocal anomaly. It is determined by the mean between the true anomaly, $f$, and the antifocal anomaly, $f^{\prime}$; Fukushima defined $f^{\prime}$ as the angle between the periapsis and the secondary around the empty focus. In this first part of the paper, we take an approach to the study of the semifocal anomaly in the hyperbolic motion and in the limit case correspoding to the parabolic movement. From here we find a relation beetween the semifocal anomaly and the true anomaly that holds independently of the movement type. We focus on the study of the two-body problem when this new anomaly is used as the temporal variable.\\ In the second part, we show the use of this anomaly —combined with numerical integration methods— to improve integration errors in one revolution. Finally, we analyze the errors committed in the integration process —depending on several values of the eccentricity— for the elliptic, parabolic and hyperbolic cases in the apsidal region.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Poul H. Damgaard ◽  
Ludovic Planté ◽  
Pierre Vanhove

Abstract An exponential representation of the S-matrix provides a natural framework for understanding the semi-classical limit of scattering amplitudes. While sharing some similarities with the eikonal formalism it differs from it in details. Computationally, rules are simple because pieces that must be subtracted are given by combinations of unitarity cuts. Analyzing classical gravitational scattering to third Post-Minkowskian order in both maximal supergravity and Einstein gravity we find agreement with other approaches, including the contributions from radiation reaction terms. The kinematical relation for the two-body problem in isotropic coordinates follows immediately from this procedure, again with the inclusion of radiation reaction pieces up to third Post-Minkowskian order.


2021 ◽  
Vol 162 (3) ◽  
pp. 95
Author(s):  
Antonio Elipe ◽  
Manuel Calvo ◽  
Alberto Abad ◽  
José A. Docobo

Author(s):  
Tomasz Stachowiak ◽  
◽  
Andrzej J. Maciejewski ◽  
◽  
◽  
...  

The analog of the Kepler system defined on the Heisenberg group introduced by Montgomery and Shanbrom in [Fields Inst. Commun., Vol. 73, Springer, New York, 2015, 319-342, arXiv:1212.2713] is integrable on the zero level of the Hamiltonian. We show that in all other cases the system is not Liouville integrable due to the lack of additional meromorphic first integrals. We prove that the analog of the two-body problem on the Heisenberg group is not integrable in the Liouville sense.


2021 ◽  
Vol 133 (8) ◽  
Author(s):  
Alex Ho ◽  
Margrethe Wold ◽  
John T. Conway ◽  
Mohammad Poursina

AbstractA new technique that utilizes surface integrals to find the force, torque and potential energy between two non-spherical, rigid bodies is presented. The method is relatively fast, and allows us to solve the full rigid two-body problem for pairs of spheroids and ellipsoids with 12 degrees of freedom. We demonstrate the method with two dimensionless test scenarios, one where tumbling motion develops, and one where the motion of the bodies resemble spinning tops. We also test the method on the asteroid binary (66391) 1999 KW4, where both components are modelled either as spheroids or ellipsoids. The two different shape models have negligible effects on the eccentricity and semi-major axis, but have a larger impact on the angular velocity along the z-direction. In all cases, energy and total angular momentum is conserved, and the simulation accuracy is kept at the machine accuracy level.


Sign in / Sign up

Export Citation Format

Share Document