A novel approach for analog circuit fault diagnosis based on Deep Belief Network

Measurement ◽  
2018 ◽  
Vol 121 ◽  
pp. 170-178 ◽  
Author(s):  
Guangquan Zhao ◽  
Xiaoyong Liu ◽  
Bin Zhang ◽  
Yuefeng Liu ◽  
Guangxing Niu ◽  
...  
2018 ◽  
Vol 173 ◽  
pp. 03090
Author(s):  
WANG Ying-chen ◽  
DUAN Xiu-sheng

Aiming at the problem that the traditional intelligent fault diagnosis method is overly dependent on feature extraction and the lack of generalization ability, deep belief network is proposed for the fault diagnosis of the analog circuit; Then, by analyzing the deficiency of deep belief network application, a Gaussian deep belief network based on adaptive learning rate is proposed. The automatic adjustment learning step is adopted to further improve fault diagnosis efficiency and diagnosis accuracy; Finally, particle swarm support vector machine to extract the fault characteristics to identify. The simulation results of circuit fault diagnosis show that the algorithm has faster convergence speed and higher fault diagnosis accuracy.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1570
Author(s):  
Bolun Du ◽  
Yigang He ◽  
Yaru Zhang

Effective open-circuit fault diagnosis for a two-level three-phase pulse-width modulating (PWM) rectifier can reduce the failure rate and prevent unscheduled shutdown. Nevertheless, traditional signal-based feature extraction methods show poor distinguishability for insufficient fault features. Shallow learning diagnosis models are prone to fall into local extremum, slow convergence speed, and overfitting. In this paper, a novel fault diagnosis strategy based on modified ensemble empirical mode decomposition (MEEMD) and the beetle antennae search (BAS) algorithm optimized deep belief network (DBN) is proposed to cope with these problems. Initially, MEEMD is applied to extract useful fault features from each intrinsic mode function (IMF) component. Meanwhile, to remove features with redundancy and interference, fault features are selected by calculating the importance of each feature based on the extremely randomized trees (ERT) algorithm, and the dimension of fault feature vectors is reduced by principal component analysis. Additionally, the DBN stacked with two layers of a restricted Boltzmann machine (RBM) is selected as the classifier, and the BAS algorithm is used as the optimizer to determine the optimal number of units in the hidden layers of the DBN. The proposed method combined with feature extraction, feature selection, optimization, and fault classification algorithms significantly improves the diagnosis accuracy.


Author(s):  
Jianfeng Jiang

Objective: In order to diagnose the analog circuit fault correctly, an analog circuit fault diagnosis approach on basis of wavelet-based fractal analysis and multiple kernel support vector machine (MKSVM) is presented in the paper. Methods: Time responses of the circuit under different faults are measured, and then wavelet-based fractal analysis is used to process the collected time responses for the purpose of generating features for the signals. Kernel principal component analysis (KPCA) is applied to reduce the features’ dimensionality. Afterwards, features are divided into training data and testing data. MKSVM with its multiple parameters optimized by chaos particle swarm optimization (CPSO) algorithm is utilized to construct an analog circuit fault diagnosis model based on the testing data. Results: The proposed analog diagnosis approach is revealed by a four opamp biquad high-pass filter fault diagnosis simulation. Conclusion: The approach outperforms other commonly used methods in the comparisons.


Author(s):  
Honghui Li ◽  
Hongkun Wang ◽  
Ziwen Xie ◽  
Mengqi He

As the key running part of the railway freight transportation system, the wheel not only bears the load of the vehicle, but also ensures the running and steering of the car body on the rails. The frequent high-speed friction with the rail and brake is the main reason for early failure of wheelset tread. Therefore, real-time status monitoring and early fault diagnosis of wheel treads have become key technical issues that must be solved in the reform of the railway freight maintenance system. In this paper, an adaptive hybrid Simulated Annealing Cuckoo Search algorithm (SA-ACS) is proposed and applied to the Deep Belief Network (DBN). The SA-ACS-DBN algorithm is used to improve the training speed and convergence accuracy of the diagnosis model. Finally, it is found through the comparison experiment of wheel tread fault data that the data results prove the feasibility of the SA-ACS-DBN model in the application of wheelset fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document