cuckoo search algorithm
Recently Published Documents


TOTAL DOCUMENTS

1261
(FIVE YEARS 519)

H-INDEX

50
(FIVE YEARS 12)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ridvan Oruc ◽  
Ozlem Sahin ◽  
Tolga Baklacioglu

Purpose The purpose of this paper is to create a new fuel flow rate model using cuckoo search algorithm (CSA) for the descending stage of the flight. Design/methodology/approach Using the actual flight data record data of the B737-800 aircraft, a new fuel flow rate model has been developed for this aircraft type. The created model is to predict the fuel flow rate with high accuracy depending on the altitude and true airspeed. In addition, the CSA fuel flow rate model was used to calculate the fuel consumption for the point merge system, which is used for combining the initial approach to the final approach at Istanbul Airport, the largest airport of Turkey. Findings As a result of the analysis, the correlation coefficient value is found as 0.996858 for Flight 1, 0.998548 for Flight 2, 0.995363 and 0.997351 for Flight 3 and Flight 4, respectively. The values that are so close to 1 indicate that the model predicts the real fuel flow rate data with high accuracy. Practical implications This model is considered to be useful in air traffic management decision support systems, aircraft performance models, models used for trajectory prediction and strategies used by the aviation community to reduce fuel consumption and related emissions. Originality/value The importance of this study lies in the fact that to the best of the authors’ knowledge, it is the first fuel flow rate model developed using CSA for the descent stage in the existing literature; the data set used is real values.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Zaid Abdi Alkareem Alyasseri ◽  
Osama Ahmad Alomari ◽  
Mohammed Azmi Al-Betar ◽  
Mohammed A. Awadallah ◽  
Karrar Hameed Abdulkareem ◽  
...  

Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain’s electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86 % using only 24 sensors with AR 20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.


2022 ◽  
Vol 1216 (1) ◽  
pp. 012016
Author(s):  
K Ahmad-Rashid

Abstract In this paper one of the recently developed metaheuristic algorithms, the Cuckoo Search algorithm is used for the optimization of the operation of a large hydropower plant in Kurdistan, Iraq. The optimization problem is to realize an annual planned energy generation with monthly imposed fractions. The obtained results are excellent, nevertheless, there are some limitations of the algorithm determined by the initial level into the reservoir and a certain correlation between the type of the year, the starting level and the planned energy to be realized.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Clustering of data is one of the necessary data mining techniques, where similar objects are grouped in the same cluster. In recent years, many nature-inspired based clustering techniques have been proposed, which have led to some encouraging results. This paper proposes a Modified Cuckoo Search (MoCS) algorithm. In this proposed work, an attempt has been made to balance the exploration of the Cuckoo Search (CS) algorithm and to increase the potential of the exploration to avoid premature convergence. This algorithm is tested using fifteen benchmark test functions and is proved as an efficient algorithm in comparison to the CS algorithm. Further, this method is compared with well-known nature-inspired algorithms such as Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Particle Swarm Optimization with Age Group topology (PSOAG) and CS algorithm for clustering of data using six real datasets. The experimental results indicate that the MoCS algorithm achieves better results as compared to other algorithms in finding optimal cluster centers.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Cuckoo Search (CS) algorithm is a nature-inspired optimization algorithm (NIOA) with less control parameters that is stable, versatile, and easy to implement. CS has good global search capabilities, but it is prone to local optima problems. As a result, it may be possible to improve the classic CS algorithm's optimization capability. Centered on fuzzy set theory, this paper introduces an improved CS version. The population of solutions has been divided into two fuzzy sets, and each solution is assigned to one of the sets based on its fitness. The fuzzy collection centroids, global best solution advice, and Lévy distribution dependent mutation are all used to boost the population's solutions. With well-accepted objective functions such as Otsu inter class variance and Kapur's entropy, the experimental analysis has been conducted on the CEC-2014 test suite and image multi-level thresholding domain. The proposed fuzzy cuckoo search (FCS) algorithm is compared to the classical CS, PSO, FA, SMA, and BA algorithm and provides satisfactory results.


2021 ◽  
Vol 5 (2) ◽  
pp. 74-79
Author(s):  
Andi Imran ◽  
Imam Robandi ◽  
Firdaus Firdaus ◽  
Ruslan Ruslan ◽  
Muhammad Yusuf Mappeasse ◽  
...  

This study aims to analysis peak load prediction of Indonesian national holidays for Jawa-Bali electricity system. Forecasting applied using the Fuzzy Logic System (FLS) method combined with the Cuckoo Search Algorithm (CSA). CSA is used to determine the optimal membership function in fuzzy logic. Cuckoo search algorithm has a very good performance in terms of optimization. This method is applied for short-term load estimates on holidays/special days on the Jawa-Bali electricity system, Indonesia. The study used data from daily peak loads during Indonesian national holidays in 2014 on the Jawa-Bali electricity system. The data analyzed is the daily peak load documentation data for 4 days before national holidays and during national holidays in 2014. Testing the simulation results, it was found that the Fuzzy Logic System - Cuckoo Search Algorithm (FLS-CSA) method gives good forecasting results, this is evidenced by using the mean absolute percentage error (MAPE). Forecasting results using the Cuckoo Search Algorithm (CSA) optimization method on fuzzy logic membership functions for peak loads on national holidays on the Java-Bali 500kV electrical system give satisfactory results with an average forecasting error of 1.511314562%.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012025
Author(s):  
Shao Qiang Ye ◽  
Fang Ling Wang ◽  
Kai Qing Zhou

Abstract A modified Cuckoo search algorithm (MCS) is proposed in this paper to improve the accuracy of the algorithm’s convergence by implementing random operators and adapt the adjustment mechanism of the Levy Flight search step length. Comparative experiments reveal that MCS can effectively adjust the search mechanism in the high-dimensional function optimization and converge to the optimal global value.


Sign in / Sign up

Export Citation Format

Share Document