An acceleration-level visual servoing scheme for robot manipulator with IoT and sensors using recurrent neural network

Measurement ◽  
2020 ◽  
Vol 166 ◽  
pp. 108137
Author(s):  
Jun Yang ◽  
Zhengtai Xie ◽  
Li Chen ◽  
Mei Liu
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhiguan Huang ◽  
Zhengtai Xie ◽  
Long Jin ◽  
Yuhe Li

Recent decades have witnessed the rapid evolution of robotic applications and their expansion into a variety of spheres with remarkable achievements. This article researches a crucial technique of robot manipulators referred to as visual servoing, which relies on the visual feedback to respond to the external information. In this regard, the visual servoing issue is tactfully transformed into a quadratic programming problem with equality and inequality constraints. Differing from the traditional methods, a gradient-based recurrent neural network (GRNN) for solving the visual servoing issue is newly proposed in this article in the light of the gradient descent method. Then, the stability proof is presented in theory with the pixel error convergent exponentially to zero. Specifically speaking, the proposed method is able to impel the manipulator to approach the desired static point while maintaining physical constraints considered. After that, the feasibility and superiority of the proposed GRNN are verified by simulative experiments. Significantly, the proposed visual servo method can be leveraged to medical robots and rehabilitation robots to further assist doctors in treating patients remotely.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


Sign in / Sign up

Export Citation Format

Share Document