acceleration level
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Vol 3 (1) ◽  
pp. 21-28
Author(s):  
Jan Zdzisław Targosz ◽  
Jarosław Bednarz ◽  
Wojciech Lisowski

This paper presents application of Finite Element Method in designing of a vibroisolated object. A model of power generator of 113 MW was chosen for the analysis. Such the generator is used in one of power plants in Silesia district. Several frequency domain dynamic analyses aimed at assessment of influence of vibroisolation on acceleration level of the generator foundation were performed. Three different models of the generator were considered. For the purposes of verification of the obtained results measured vibration accelerations were used.


2021 ◽  
Vol 11 (13) ◽  
pp. 6209
Author(s):  
Iwona Pajak ◽  
Grzegorz Pajak

This paper presents the usage of holonomic mobile humanoid manipulators to carry out autonomous tasks in industrial environments, according to the smart factory concept and the Industry 4.0 philosophy. The problem of transporting lengthy objects, taking into account mechanical limitations, the conditions for avoiding collisions, as well as the dexterity of the manipulator arms was considered. The primary problem was divided into three phases, leading to three different types of robotic tasks. In the proposed approach, the pseudoinverse Jacobian method at the acceleration level to solve each of the tasks was used. The redundant degrees of freedom were used to satisfy secondary objectives such as robot kinetic energy, the maximization of the manipulability measure, and the fulfillment mechanical and collision-avoidance limitations. A computer example involving a mobile humanoid manipulator, operating in an industrial environment, illustrated the effectiveness of the proposed method.


2021 ◽  
Vol 69 (4) ◽  
pp. 373-388
Author(s):  
Zhaoping Tang ◽  
Min Wang ◽  
Xiaoying Xiong ◽  
Manyu Wang ◽  
Jianping Sun ◽  
...  

Under high-speed operating conditions, the noise caused by the vibration of the traction gear transmission system of the Electric Multiple Units (EMU) will distinctly reduce the comfort of passengers. Therefore, analyzing the dynamic characteristics of traction gears and reducing noise from the root cause through comprehensive modification of gear pairs have become a hot research topic. Taking the G301 traction gear transmission system of the CRH380A high-speed EMU as the research object and then using Romax software to establish a parametric modification model of the gear transmission system, through dynamics, modal and Noise Vibration Harshness (NVH) simulation analysis, the law of howling noise of gear pair changes with modification parameters is studied. In the small sample training environment, the noise prediction model is constructed based on the priority weighted Back Propagation (BP) neural network of small noise samples. Taking the minimum noise of high-speed EMU traction gear transmission as the optimization goal, the simulated annealing (SA) algorithm is introduced to solve the model, and the optimal combination of modification parameters and noise data is obtained. The results show that the prediction accuracy of the prediction model is as high as 98.9%, and it can realize noise prediction under any combination of modification parameters. The optimal modification parameter combination obtained by solving the model through the SA algorithm is imported into the traction gear transmission system model. The vibration acceleration level obtained by the simulation is 89.647 dB, and the amplitude of the vibration acceleration level is reduced by 25%. It is verified that this modification optimization design can effectively reduce the gear transmission.


Meccanica ◽  
2021 ◽  
Author(s):  
Dóra Patkó ◽  
Ambrus Zelei

AbstractFor both non-redundant and redundant systems, the inverse kinematics (IK) calculation is a fundamental step in the control algorithm of fully actuated serial manipulators. The tool-center-point (TCP) position is given and the joint coordinates are determined by the IK. Depending on the task, robotic manipulators can be kinematically redundant. That is when the desired task possesses lower dimensions than the degrees-of-freedom of a redundant manipulator. The IK calculation can be implemented numerically in several alternative ways not only in case of the redundant but also in the non-redundant case. We study the stability properties and the feasibility of a tracking error feedback and a direct tracking error elimination approach of the numerical implementation of IK calculation both on velocity and acceleration levels. The feedback approach expresses the joint position increment stepwise based on the local velocity or acceleration of the desired TCP trajectory and linear feedback terms. In the direct error elimination concept, the increment of the joint position is directly given by the approximate error between the desired and the realized TCP position, by assuming constant TCP velocity or acceleration. We investigate the possibility of the implementation of the direct method on acceleration level. The investigated IK methods are unified in a framework that utilizes the idea of the auxiliary input. Our closed form results and numerical case study examples show the stability properties, benefits and disadvantages of the assessed IK implementations.


2021 ◽  
Vol 17 (1) ◽  
pp. 147-157
Author(s):  
Qingshan Feng ◽  
Zexin Li ◽  
Jianhuang Cai ◽  
Dongsheng Guo

Sign in / Sign up

Export Citation Format

Share Document