Genetic variation in normal tissue toxicity induced by ionizing radiation

Author(s):  
Odilia Popanda ◽  
Jens Uwe Marquardt ◽  
Jenny Chang-Claude ◽  
Peter Schmezer
2010 ◽  
Vol 1 (1) ◽  
pp. 11 ◽  
Author(s):  
Marco Ghilotti ◽  
Marco Alessandro Pierotti ◽  
Manuela Gariboldi

Radiotherapy is one of the most effective methods for the treatment of cancer, but occurrence of adverse reactions developing in the co-irradiated normal tissue can be a threat for patients. Identification of individuals at risk of severe reaction is very difficult and considerable efforts have been made to correlate normal tissue toxicity with cellular responses to ionizing radiation. Genetic markers enabling to identify hyper-sensitive patients prior to treatment would considerably improve its outcome. Gene association studies should help to identify such markers. Expression levels of specific transcripts could be putative markers; in fact different studies found associations between gene expression profiles in normal cells and the reaction of normal tissues to radiation therapy. The finding that ionizing radiation induces the deregulation of a high number of genes suggests that also microRNAs that affect the expression of a large number of target genes may be involved. This review briefly introduces the mechanisms of radiation-induced normal tissue toxicity and summarizes clinical research focused on the evaluation of molecular biomarkers for predicting risk of injury to normal tissue, mainly describing gene transcripts alterations.


2010 ◽  
Vol 11 (11) ◽  
pp. 1395-1404 ◽  
Author(s):  
Virginie Monceau ◽  
Nadia Pasinetti ◽  
Charlotte Schupp ◽  
Fred Pouzoulet ◽  
Paule Opolon ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
pp. 130-145 ◽  
Author(s):  
Keywan Mortezaee ◽  
Masoud Najafi ◽  
Bagher Farhood ◽  
Amirhossein Ahmadi ◽  
Dheyauldeen Shabeeb ◽  
...  

Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 925
Author(s):  
Eva-Maria Faulhaber ◽  
Tina Jost ◽  
Julia Symank ◽  
Julian Scheper ◽  
Felix Bürkel ◽  
...  

(1) Kinase inhibitors (KI) targeting components of the DNA damage repair pathway are a promising new type of drug. Combining them with ionizing radiation therapy (IR), which is commonly used for treatment of head and neck tumors, could improve tumor control, but could also increase negative side effects on surrounding normal tissue. (2) The effect of KI of the DDR (ATMi: AZD0156; ATRi: VE-822, dual DNA-PKi/mTORi: CC-115) in combination with IR on HPV-positive and HPV-negative HNSCC and healthy skin cells was analyzed. Cell death and cell cycle arrest were determined using flow cytometry. Additionally, clonogenic survival and migration were analyzed. (3) Studied HNSCC cell lines reacted differently to DDRi. An increase in cell death for all of the malignant cells could be observed when combining IR and KI. Healthy fibroblasts were not affected by simultaneous treatment. Migration was partially impaired. Influence on the cell cycle varied between the cell lines and inhibitors; (4) In conclusion, a combination of DDRi with IR could be feasible for patients with HNSCC. Side effects on healthy cells are expected to be limited to normal radiation-induced response. Formation of metastases could be decreased because cell migration is impaired partially. The treatment outcome for HPV-negative tumors tends to be improved by combined treatment.


2021 ◽  
Vol 11 (2) ◽  
pp. 140
Author(s):  
Prabal Subedi ◽  
Maria Gomolka ◽  
Simone Moertl ◽  
Anne Dietz

Background and objectives: Exposure to ionizing radiation (IR) has increased immensely over the past years, owing to diagnostic and therapeutic reasons. However, certain radiosensitive individuals show toxic enhanced reaction to IR, and it is necessary to specifically protect them from unwanted exposure. Although predicting radiosensitivity is the way forward in the field of personalised medicine, there is limited information on the potential biomarkers. The aim of this systematic review is to identify evidence from a range of literature in order to present the status quo of our knowledge of IR-induced changes in protein expression in normal tissues, which can be correlated to radiosensitivity. Methods: Studies were searched in NCBI Pubmed and in ISI Web of Science databases and field experts were consulted for relevant studies. Primary peer-reviewed studies in English language within the time-frame of 2011 to 2020 were considered. Human non-tumour tissues and human-derived non-tumour model systems that have been exposed to IR were considered if they reported changes in protein levels, which could be correlated to radiosensitivity. At least two reviewers screened the titles, keywords, and abstracts of the studies against the eligibility criteria at the first phase and full texts of potential studies at the second phase. Similarly, at least two reviewers manually extracted the data and accessed the risk of bias (National Toxicology Program/Office for Health Assessment and Translation—NTP/OHAT) for the included studies. Finally, the data were synthesised narratively in accordance to synthesis without meta analyses (SWiM) method. Results: In total, 28 studies were included in this review. Most of the records (16) demonstrated increased residual DNA damage in radiosensitive individuals compared to normo-sensitive individuals based on γH2AX and TP53BP1. Overall, 15 studies included proteins other than DNA repair foci, of which five proteins were selected, Vascular endothelial growth factor (VEGF), Caspase 3, p16INK4A (Cyclin-dependent kinase inhibitor 2A, CDKN2A), Interleukin-6, and Interleukin-1β, that were connected to radiosensitivity in normal tissue and were reported at least in two independent studies. Conclusions and implication of key findings: A majority of studies used repair foci as a tool to predict radiosensitivity. However, its correlation to outcome parameters such as repair deficient cell lines and patients, as well as an association to moderate and severe clinical radiation reactions, still remain contradictory. When IR-induced proteins reported in at least two studies were considered, a protein network was discovered, which provides a direction for further studies to elucidate the mechanisms of radiosensitivity. Although the identification of only a few of the commonly reported proteins might raise a concern, this could be because (i) our eligibility criteria were strict and (ii) radiosensitivity is influenced by multiple factors. Registration: PROSPERO (CRD42020220064).


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Sadaf Aghevlian ◽  
Zhongli Cai ◽  
David Hedley ◽  
Mitchell A. Winnik ◽  
Raymond M. Reilly

Abstract Background Epidermal growth factor receptors (EGFR) are overexpressed on > 90% of pancreatic cancers (PnCa) and represent an attractive target for the development of novel therapies, including radioimmunotherapy (RIT). Our aim was to study RIT of subcutaneous (s.c.) PANC-1 human PnCa xenografts in mice using the anti-EGFR monoclonal antibody, panitumumab labeled with Auger electron (AE)-emitting, 111In or β-particle emitting, 177Lu at amounts that were non-toxic to normal tissues. Results Panitumumab was conjugated to DOTA chelators for complexing 111In or 177Lu (panitumumab-DOTA-[111In]In and panitumumab-DOTA-[177Lu]Lu) or to a metal-chelating polymer (MCP) with multiple DOTA to bind 111In (panitumumab-MCP-[111In]In). Panitumumab-DOTA-[177Lu]Lu was more effective per MBq exposure at reducing the clonogenic survival in vitro of PANC-1 cells than panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In. Panitumumab-DOTA-[177Lu]Lu caused the greatest density of DNA double-strand breaks (DSBs) in the nucleus measured by immunofluorescence for γ-H2AX. The absorbed dose in the nucleus was 3.9-fold higher for panitumumab-DOTA-[177Lu]Lu than panitumumab-DOTA-[111In]In and 7.7-fold greater than panitumumab-MCP-[111In]In. No normal tissue toxicity was observed in NOD/SCID mice injected intravenously (i.v.) with 10.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In or in NRG mice injected i.v. with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu. There was no decrease in complete blood cell counts (CBC) or increased serum alanine aminotransferase (ALT) or creatinine (Cr) or decreased body weight. RIT inhibited the growth of PANC-1 tumours but a 5-fold greater total amount of panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In (30 MBq; 30 μg; ~ 0.21 nmoles) administered in three fractionated amounts every three weeks was required to achieve greater or equivalent tumour growth inhibition, respectively, compared to a single amount of panitumumab-DOTA-[177Lu]Lu (6 MBq; 10 μg; ~ 0.07 nmoles). The tumour doubling time (TDT) for NOD/SCID mice with s.c. PANC-1 tumours treated with panitumumab-DOTA-[111In]In or panitumumab-MCP-[111In]In was 51.8 days and 28.1 days, respectively. Panitumumab was ineffective yielding a TDT of 15.3 days vs. 15.6 days for normal saline treated mice. RIT of NRG mice with s.c. PANC-1 tumours with 6.0 MBq (10 μg; ~ 0.07 nmoles) of panitumumab-DOTA-[177Lu]Lu increased the TDT to 20.9 days vs. 11.5 days for panitumumab and 9.1 days for normal saline. The absorbed doses in PANC-1 tumours were 8.8 ± 3.0 Gy and 2.6 ± 0.3 Gy for panitumumab-DOTA-[111In]In and panitumumab-MCP-[111In]In, respectively, and 11.6 ± 4.9 Gy for panitumumab-DOTA-[177Lu]Lu. Conclusion RIT with panitumumab labeled with Auger electron-emitting, 111In or β-particle-emitting, 177Lu inhibited the growth of s.c. PANC-1 tumours in NOD/SCID or NRG mice, at administered amounts that caused no normal tissue toxicity. We conclude that EGFR-targeted RIT is a promising approach to treatment of PnCa.


Author(s):  
Rosalyn D. Blumenthal ◽  
Walter Lew ◽  
Albert Reising ◽  
Danielle Soyne ◽  
Lou Osorio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document