High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel

2017 ◽  
Vol 679 ◽  
pp. 258-271 ◽  
Author(s):  
B. Wang ◽  
P. Zhang ◽  
Q.Q. Duan ◽  
Z.J. Zhang ◽  
H.J. Yang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2245
Author(s):  
Michael Fitzka ◽  
Bernd M. Schönbauer ◽  
Robert K. Rhein ◽  
Niloofar Sanaei ◽  
Shahab Zekriardehani ◽  
...  

Ultrasonic fatigue testing is an increasingly used method to study the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) properties of materials. Specimens are cycled at an ultrasonic frequency, which leads to a drastic reduction of testing times. This work focused on summarising the current understanding, based on literature data and original work, whether and how fatigue properties measured with ultrasonic and conventional equipment are comparable. Aluminium alloys are not strain-rate sensitive. A weaker influence of air humidity at ultrasonic frequencies may lead to prolonged lifetimes in some alloys, and tests in high humidity or distilled water can better approximate environmental conditions at low frequencies. High-strength steels are insensitive to the cycling frequency. Strain rate sensitivity of ferrite causes prolonged lifetimes in those steels that show crack initiation in the ferritic phase. Austenitic stainless steels are less prone to frequency effects. Fatigue properties of titanium alloys and nickel alloys are insensitive to testing frequency. Limited data for magnesium alloys and graphite suggest no frequency influence. Ultrasonic fatigue tests of a glass fibre-reinforced polymer delivered comparable lifetimes to servo-hydraulic tests, suggesting that high-frequency testing is, in principle, applicable to fibre-reinforced polymer composites. The use of equipment with closed-loop control of vibration amplitude and resonance frequency is strongly advised since this guarantees high accuracy and reproducibility of ultrasonic tests. Pulsed loading and appropriate cooling serve to avoid specimen heating.


2011 ◽  
Vol 697-698 ◽  
pp. 235-238 ◽  
Author(s):  
L. Zhou ◽  
Y.H. Li ◽  
W.F. He ◽  
X.D. Wang ◽  
Q.P. Li

A plasma sound wave detection method of laser shock processing (LSP) technology is proposed. Speciments of Ni-base superalloy are used in this paper. A convergent lens is used to deliver 1.2 J, 10 ns laser pulses by a Q-switch Nd:YAG laser, operating at 1 Hz. The influence of the laser density to the shock wave is investigated in detail for two different wavelength lasers. Constant amplitude fatigue data are generated in room environment using notch specimens tested at an amplitude of vibration 2.8 mm and first-order flextensional mode. The results show that LSP is an effective surface treatment technique for improving the high cycle fatigue performance of Ni-base superalloys having a factor of 1.62 improvement in fatigue life.


Sign in / Sign up

Export Citation Format

Share Document