Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al–Li alloy

Author(s):  
Fei Dong ◽  
Shiquan Huang ◽  
Youping Yi ◽  
Hailin He ◽  
Ke Huang ◽  
...  
JOM ◽  
2021 ◽  
Vol 73 (2) ◽  
pp. 668-678
Author(s):  
Hebin Wang ◽  
Da Hong ◽  
Longgang Hou ◽  
Ping Ou ◽  
Li Shen ◽  
...  

Author(s):  
Wenqing Wei ◽  
Jing Sun ◽  
Shuzhi Zhang ◽  
Bingqiang Liu ◽  
Kai Yan ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
pp. 377-381
Author(s):  
Kun Xia Wei ◽  
Sheng Long Wang ◽  
Wei Wei ◽  
Qing Bo Du ◽  
Igor V. Alexandrov ◽  
...  

Abstract Cu-7%Al alloy subjected to equal channel angular pressing at cryogenic temperature with liquid nitrogen cooling (Cryo-ECAP)was treated by annealing. The microstructure and mechanical properties of Cu-7%Al alloy before and after annealing were investigated. It shows that a large number of annealing twins formed in Cu-7%Al alloy subjected to Cryo-ECAP. After 300∘C and 0.5 h annealing in Cu-7%Al alloy processed by Cryo-ECAP, tensile strength and uniform elongation was increased up to 644 MPa and 7.6% respectively. The enhanced mechanical properties of Cu-7%Al alloy after annealing is attributed to the high density nanoscale twins.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5856
Author(s):  
Pragya Mishra ◽  
Pia Åkerfeldt ◽  
Farnoosh Forouzan ◽  
Fredrik Svahn ◽  
Yuan Zhong ◽  
...  

Laser powder bed fusion (L-PBF) has attracted great interest in the aerospace and medical sectors because it can produce complex and lightweight parts with high accuracy. Austenitic stainless steel alloy 316 L is widely used in many applications due to its good mechanical properties and high corrosion resistance over a wide temperature range. In this study, L-PBF-processed 316 L was investigated for its suitability in aerospace applications at cryogenic service temperatures and the behavior at cryogenic temperature was compared with room temperature to understand the properties and microstructural changes within this temperature range. Tensile tests were performed at room temperature and at −196 °C to study the mechanical performance and phase changes. The microstructure and fracture surfaces were characterized using scanning electron microscopy, and the phases were analyzed by X-ray diffraction. The results showed a significant increase in the strength of 316 L at −196 °C, while its ductility remained at an acceptable level. The results indicated the formation of ε and α martensite during cryogenic testing, which explained the increase in strength. Nanoindentation revealed different hardness values, indicating the different mechanical properties of austenite (γ), strained austenite, body-centered cubic martensite (α), and hexagonal close-packed martensite (ε) formed during the tensile tests due to mechanical deformation.


Sign in / Sign up

Export Citation Format

Share Document