scholarly journals On the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materials

2022 ◽  
Vol 214 ◽  
pp. 112539
Author(s):  
Gianni Dal Maso ◽  
Rodica Toader
1986 ◽  
Vol 32 (3) ◽  
pp. 143-156 ◽  
Author(s):  
E. E. Gdoutos ◽  
G. Papakaliatakis

1951 ◽  
Vol 18 (1) ◽  
pp. 101-106
Author(s):  
J. T. Bergen ◽  
G. W. Scott

Abstract In the calendering, or rolling, of a plastic material in to sheet form by passing it between parallel rolls, hydrostatic pressure is exerted against the surface of the roll throughout the region of contact with the plastic mass. This pressure has been measured by means of a pressure-sensitive cylinder, inserted in the body of a 10-in-diam roll, together with high-speed oscillographic technique. The materials which were calendered consisted of a resin which exhibited flow properties characteristic of a viscous liquid, and several filled plastic compositions of commercial interest. Pressure maxima ranging up to 8000 psi were observed. Comparison of experimental results with theoretical expressions for pressure distribution, as given by several authors, indicates that the equation derived by Gaskell quite satisfactorily predicts the results for the case of the viscous liquid. The commercial plastics were found to exhibit pressure-distribution characteristics which were perceptibly different from those of the viscous liquid. Certain limitations of Gaskell’s treatment of nonviscous materials prevent its application to these experimental results.


Author(s):  
Shin-Jang Sung ◽  
Nikhil Kotasthane ◽  
Yugo Ashida ◽  
Jwo Pan

In this paper, stress and strain distributions near a crack tip in a round compact tension specimen of elastic-plastic materials are obtained by finite element analyses. The strain distributions are used to explore the use of the crack tip strain distributions for crack growth rate models due to stress corrosion cracking in unirradiated and irradiated steels with different yield stresses and hardening behaviors. Both power-law hardening and perfectly plastic materials are considered. The computational results indicate that the critical radial distance to the tip based on the crack tip opening displacement is outside of the Hutchinson-Rice-Rosengren (HRR) dominant zone for power-law hardening materials in a round compact tension specimen under the stress intensity factor typically considered for stress corrosion cracking. For both the power-law hardening and perfectly plastic materials, the computational results show that the strain distributions are different from those of the analytical solutions for the range of the radial distance larger than the critical radial distance based on the crack opening displacement within the plastic zones. The computational results suggest that for the stress intensity factor typically considered for stress corrosion crack growth rate models, computational results are needed to estimate the strain rate for developing crack growth rate models to correlate to the experimental data.


Author(s):  
Michael Späth ◽  
Christoph Herrmann ◽  
Nishant Prajapati ◽  
Daniel Schneider ◽  
Felix Schwab ◽  
...  

Abstract A multiphase-field approach for elasto-plastic and anisotropic brittle crack propagation in geological systems consisting of different regions of brittle and ductile materials is presented and employed to computationally study crack propagation. Plastic deformation in elasto-plastic materials such as frictional, granular or porous materials is modelled with the pressure-sensitive Drucker-Prager plasticity model. This plasticity model is combined with a multiphase-field model fulfilling the mechanical jump conditions in diffuse solid-solid interfaces. The validity of the plasticity model with phase-inherent stress and strain fields is shown, in comparison with sharp interface finite element solutions. The proposed model is capable of simulating crack formation in heterogeneous multiphase systems comprising both purely elastic and inelastic phases. We investigate the influence of different material parameters on the crack propagation with tensile tests in single- and two-phase materials. To show the applicability of the model, crack propagation in a multiphase domain with brittle and elasto-plastic components is performed.


Sign in / Sign up

Export Citation Format

Share Document