Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress

Nitric Oxide ◽  
2018 ◽  
Vol 73 ◽  
pp. 22-38 ◽  
Author(s):  
Fareen Sami ◽  
Mohammad Faizan ◽  
Ahmad Faraz ◽  
Husna Siddiqui ◽  
Mohammad Yusuf ◽  
...  
Author(s):  
Gábor Feigl ◽  
Árpád Molnár ◽  
Dóra Oláh ◽  
Zsuzsanna Kolbert

Author(s):  
Zaffar Malik ◽  
Sobia Afzal ◽  
Muhammad Danish ◽  
Ghulam Hassan Abbasi ◽  
Syed Asad Hussain Bukhari ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10206
Author(s):  
Juanjuan Huang ◽  
Shengji Wang ◽  
Xingdou Wang ◽  
Yan Fan ◽  
Youzhi Han

Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.


2019 ◽  
Author(s):  
Prasanna Boyidi ◽  
Trishla Vikas Shalibhadra ◽  
Halidev Krishna Botta ◽  
Deepanker Yadav ◽  
Pulugurtha Bharadwaja Kirti

AbstractThe current study on putative rice annexin OsAnn5 was tried to know its functional role in the abiotic stress tolerance. For this an in silico analysis of its protein sequence and upstream region was carried out. This results in identification of several probable potential sites for post-translational modifications and cis-elements respectively. We have studied the effect of OsAnn5 in the amelioration of abiotic stress tolerance through heterologous expression in transgenic tobacco and E.coli. It is observed that OsAnn5 over expression leads to enhanced tolerance to abiotic stress through efficient scavenging of the ROS and balanced expression of SOD and CAT antioxidant enzymes in both the systems, under stress treatments. Fluorescent signal for transiently expressed EGFP:OsANN5 fusion protein was localized in the peripheral region of the onion epidermal cells under salt stress treatment. Expression analysis of OsAnn5 under ABA synthesis inhibitor, fluridone and salinity stress revealed that OsAnn5 appears to act through an ABA-independent pathway under salt stress and in support to this 35S:OsAnn5 transgenics seedlings exhibited less sensitivity to externally applied ABA.


2010 ◽  
Vol 34 (2) ◽  
pp. 347-358 ◽  
Author(s):  
JIN-XIA CUI ◽  
YAN-HONG ZHOU ◽  
JIAN-GANG DING ◽  
XIAO-JIAN XIA ◽  
KAI SHI ◽  
...  

Author(s):  
Mirza Hasanuzzaman ◽  
M. H. M. Borhannuddin Bhuyan ◽  
Kamrun Nahar ◽  
Sayed Mohammad Mohsin ◽  
Jubayer Al Mahmud ◽  
...  

2021 ◽  
Author(s):  
Cisse El Hadji Malick ◽  
Miao Ling-Feng ◽  
Li Da-Dong ◽  
Yang Fan

Metabolic engineering in plant can be describe as a tool using molecular biological technologies which promotes enzymatic reactions that can enhance the biosynthesis of existing compounds such as glycine betaine (GB) in plant species that are able to accumulate GB, or produce news compounds like GB in non-accumulators plants. Moreover we can include to these definition, the mediation in the degradation of diverse compounds in plant organism. For decades, one of the most popular ideas in metabolic engineering literature is the idea that the improvement of gly betaine or melatonin accumulation in plant under environmental stress can be the main window to ameliorate stress tolerance in diverse plant species. A challenging problem in this domain is the integration of different molecular technologies like transgenesis, enzyme kinetics, promoter analysis, biochemistry and genetics, protein sorting, cloning or comparative physiology to reach that objective. A large number of approaches have been developed over the last few decades in metabolic engineering to overcome this problem. Therefore, we examine some previous work and propose some understanding about the use of metabolic engineering in plant stress tolerance. Moreover, this chapter will focus on melatonin (Hormone) and gly betaine (Osmolyte) biosynthesis pathways in engineering stress resistance.


Sign in / Sign up

Export Citation Format

Share Document