Discrete-time analogues of predator–prey models with monotonic or nonmonotonic functional responses

2007 ◽  
Vol 8 (4) ◽  
pp. 1079-1095 ◽  
Author(s):  
Yonghui Xia ◽  
Jinde Cao ◽  
Muren Lin
Parasitology ◽  
2010 ◽  
Vol 137 (6) ◽  
pp. 1027-1038 ◽  
Author(s):  
ANDY FENTON ◽  
SARAH E. PERKINS

SUMMARYPredator-prey models are often applied to the interactions between host immunity and parasite growth. A key component of these models is the immune system's functional response, the relationship between immune activity and parasite load. Typically, models assume a simple, linear functional response. However, based on the mechanistic interactions between parasites and immunity we argue that alternative forms are more likely, resulting in very different predictions, ranging from parasite exclusion to chronic infection. By extending this framework to consider multiple infections we show that combinations of parasites eliciting different functional responses greatly affect community stability. Indeed, some parasites may stabilize other species that would be unstable if infecting alone. Therefore hosts' immune systems may have adapted to tolerate certain parasites, rather than clear them and risk erratic parasite dynamics. We urge for more detailed empirical information relating immune activity to parasite load to enable better predictions of the dynamic consequences of immune-mediated interspecific interactions within parasite communities.


2013 ◽  
Vol 280 (1768) ◽  
pp. 20131389 ◽  
Author(s):  
Jiqiu Li ◽  
Andy Fenton ◽  
Lee Kettley ◽  
Phillip Roberts ◽  
David J. S. Montagnes

We propose that delayed predator–prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator–prey system (the ciliates Didinium and Paramecium ), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies.


2019 ◽  
Vol 310 ◽  
pp. 120-127 ◽  
Author(s):  
Vinicius Weide ◽  
Maria C. Varriale ◽  
Frank M. Hilker

Sign in / Sign up

Export Citation Format

Share Document