Analysis on a diffusive two-stage epidemic model with logistic growth and saturated incidence rates

2022 ◽  
Vol 64 ◽  
pp. 103444
Author(s):  
Guodong Liu ◽  
Xiaoyan Zhang
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Panpan Wang ◽  
Jianwen Jia

Abstract In this paper, a stochastic SIRD model of Ebola with double saturated incidence rates and vaccination is considered. Firstly, the existence and uniqueness of a global positive solution are obtained. Secondly, by constructing suitable Lyapunov functions and using Khasminskii’s theory, we show that the stochastic model has a unique stationary distribution. Moreover, the extinction of the disease is also analyzed. Finally, numerical simulations are carried out to portray the analytical results.


Author(s):  
Yan Zhang ◽  
Shujing Gao ◽  
Shihua Chen

AbstractInfectious diseases have for centuries been the leading causes of death and disability worldwide and the environmental fluctuation is a crucial part of an ecosystem in the natural world. In this paper, we proposed and discussed a stochastic SIRI epidemic model incorporating double saturated incidence rates and relapse. The dynamical properties of the model were analyzed. The existence and uniqueness of a global positive solution were proven. Sufficient conditions were derived to guarantee the extinction and persistence in mean of the epidemic model. Additionally, ergodic stationary distribution of the stochastic SIRI model was discussed. Our results indicated that the intensity of relapse and stochastic perturbations greatly affected the dynamics of epidemic systems and if the random fluctuations were large enough, the disease could be accelerated to extinction while the stronger relapse rate were detrimental to the control of the disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


2021 ◽  
Vol 153 ◽  
pp. 111527
Author(s):  
El Mehdi Farah ◽  
Saida Amine ◽  
Karam Allali

Author(s):  
Laid Chahrazed

In this work, we consider a nonlinear epidemic model with temporary immunity and saturated incidence rate. Size N(t) at time t, is divided into three sub classes, with N(t)=S(t)+I(t)+Q(t); where S(t), I(t) and Q(t) denote the sizes of the population susceptible to disease, infectious and quarantine members with the possibility of infection through temporary immunity, respectively. We have made the following contributions: The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determine by the ratio called the basic reproductive number, This paper study the reduce model with replace S with N, which does not have non-trivial periodic orbits with conditions. The endemic -disease point is globally asymptotically stable if R0 ˃1; and study some proprieties of equilibrium with theorems under some conditions. Finally the stochastic stabilities with the proof of some theorems. In this work, we have used the different references cited in different studies and especially the writing of the non-linear epidemic mathematical model with [1-7]. We have used the other references for the study the different stability and other sections with [8-26]; and sometimes the previous references.


2021 ◽  
pp. 545-560
Author(s):  
Abiodun Oluwakemi ◽  
Ibrahim Mohammed ◽  
Adebimpe Olukayode ◽  
Oludoun Olajumoke ◽  
Gbadamosi Babatunde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document