scholarly journals CO2 corrosion prediction of 20# steel under the influence of corrosion product film

Petroleum ◽  
2021 ◽  
Author(s):  
Yingxue Liu ◽  
Hongye Jiang ◽  
Taolong Xu ◽  
Youlv Li
Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1227
Author(s):  
Xu Zhao ◽  
Yuhong Qi ◽  
Jintao Wang ◽  
Tianxiang Peng ◽  
Zhanping Zhang ◽  
...  

To study the effect of weld and defects on the corrosion behavior of nickel aluminum bronze (UNS C95810) in 3.5% NaCl solution, the weight loss, X-ray diffraction, optical microscope, scanning electron microscope and electrochemical test of the specimen with weld and defects were investigated. The results show that the presence of weld and defects increases the corrosion rate of bronze. Weld does not change the structure of the corrosion product film, but defects induce a lack of the protective outermost corrosion product in bronze. Weld makes the corrosion product film in the early stage more porous. Defects always produce an increase in the dissolution rate of the bronze.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 209 ◽  
Author(s):  
Yang Ding ◽  
Rong Zhao ◽  
Zhenbo Qin ◽  
Zhong Wu ◽  
Liqiang Wang ◽  
...  

The in-situ studies of the corrosion product film on nickel-aluminum bronze are significant for explaining the mechanism of its corrosion resistance. In this paper, the corrosion behavior of nickel-aluminum bronze and the formation process of the protective film in 3.5 wt % NaCl solution are systematically investigated. The results of scanning electron microscope analysis and electrochemical tests indicate that the corrosion resistance of nickel-aluminum bronze is improved due to the formation of the corrosion product film. The change of local electrochemical property on the corrosion product film during the immersion time is evaluated via in-situ scanning vibrating electrode technique, and it reveals the evolution rules of ionic flux in real time. The formation process of the protective film on different phases in nickel-aluminum bronze is observed directly by in-situ atomic force microscopy as height change measurements. The α phases at different locations present different corrosion behaviors, and the lamellar α phase within the α + κIII eutectoid structure gets more serious corrosion attack. The κ phases establish a stable and dense protective film in short time, preventing the corrosion attack effectively. The β′ phase, however, suffers the most serious corrosion damage until a protective film is formed after 150 min of immersion.


2014 ◽  
Vol 39 (25) ◽  
pp. 13919-13925 ◽  
Author(s):  
Shuqi Zheng ◽  
Chengshuang Zhou ◽  
Xingyang Chen ◽  
Lin Zhang ◽  
Jinyang Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document