A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions

2009 ◽  
Vol 388 (17) ◽  
pp. 3600-3608 ◽  
Author(s):  
Daniel R. Parisi ◽  
Marcelo Gilman ◽  
Herman Moldovan
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Osama Moh'd Alia ◽  
Mohammed Mahmod Shuaib

Crowd dynamics is a discipline dealing with the management and flow of crowds in congested places and circumstances. Pedestrian congestion is a pressing issue where crowd dynamics models can be applied. The reproduction of experimental data (velocity-density relation and specific flow rate) is a major component for the validation and calibration of such models. In the social force model, researchers have proposed various techniques to adjust essential parameters governing the repulsive social force, which is an effort at reproducing such experimental data. Despite that and various other efforts, the optimal reproduction of the real life data is unachievable. In this paper, a harmony search-based technique called HS-SFM is proposed to overcome the difficulties of the calibration process for SFM, where the fundamental diagram of velocity-density relation and the specific flow rate are reproduced in conformance with the related empirical data. The improvisation process of HS is modified by incorporating the global best particle concept from particle swarm optimization (PSO) to increase the convergence rate and overcome the high computational demands of HS-SFM. Simulation results have shown HS-FSM’s ability to produce near optimal SFM parameter values, which makes it possible for SFM to almost reproduce the related empirical data.


2007 ◽  
Vol 10 (supp02) ◽  
pp. 271-288 ◽  
Author(s):  
ANDERS JOHANSSON ◽  
DIRK HELBING ◽  
PRADYUMN K. SHUKLA

Based on suitable video recordings of interactive pedestrian motion and improved tracking software, we apply an evolutionary optimization algorithm to determine optimal parameter specifications for the social force model. The calibrated model is then used for large-scale pedestrian simulations of evacuation scenarios, pilgrimage, and urban environments.


2020 ◽  
Vol 5 ◽  
Author(s):  
Hye Rin Lindsay Lee ◽  
Abhishek Bhatia ◽  
Jenny Brynjarsdóttir ◽  
Nicole Abaid ◽  
Alethea Barbaro ◽  
...  

Evacuation is a complex social phenomenon with individuals tending to exit a confined space as soon as possible. Social factors that influence an individual include collision avoidance and conformity with others with respect to the tendency to exit. While collision avoidance has been heavily focused on by the agent-based models used frequently to simulate evacuation scenarios, these models typically assume that all agents have an equal desire to exit the scene in a given situation. It is more likely that, out of those who are exiting, some are patient while others seek to exit as soon as possible. Here, we experimentally investigate the effect of different proportions of patient (no-rush) versus impatient (rush) individuals in an evacuating crowd of up to 24 people. Our results show that a) average speed changes significantly for individuals who otherwise tended to rush (or not rush) with both type of individuals speeding up in the presence of the other; and b) deviation rate, defined as the amount of turning, changes significantly for the rush individuals in the presence of no-rush individuals. We then seek to replicate this effect with Helbing's social force model with the twin purposes of analyzing how well the model fits experimental data, and explaining the differences in speed in terms of model parameters. We find that we must change the interaction parameters for both rush and no-rush agents depending on the condition that we are modeling in order to fit the model to the experimental data.


Fire Research ◽  
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Manuela Marques Lalane Nappi ◽  
Ivana Righetto Moser ◽  
João Carlos Souza

The growing number of fires and other types of catastrophes occurring at large events highlights the need to rethink safety concepts and also to include new ways to optimize buildings and venues where events are held. Although there have been some attempts to model and simulate the movement of pedestrian crowds, little knowledge has been gathered to better understand the impact of the built environment and its geometric characteristics on the crowd dynamics. This paper presents computer simulations about pedestrians’ crowd dynamics that were conducted based on the Social Force Model. The influence of different configurations of pedestrian flows merging during emergency evacuations was investigated. In this study, 12 designs with different merging angles were examined, simulating the evacuation of 400 people in each scenario. The Planung Transport Verkehr (PTV, German for Planning Transport Traffic) Viswalk module of the PTV Vissim software (PTV Group, Karlsruhe, Germany) program was adopted, which allows the employment of the Social Force approach. The results demonstrate that both symmetric and asymmetric scenarios are sensitive to the angles of convergence between pedestrian flows.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Juan Wei ◽  
Wenjie Fan ◽  
Zhongyu Li ◽  
Yangyong Guo ◽  
Yuanyuan Fang ◽  
...  

Due to the interaction and external interference, the crowds will constantly and dynamically adjust their evacuation path in the evacuation process to achieve the purpose of rapid evacuation. The information from previous process can be used to modify the current evacuation control information to achieve a better evacuation effect, and iterative learning control can achieve an effective prediction of the expected path within a limited running time. In order to depict this process, the social force model is improved based on an iterative extended state observer so that the crowds can move along the optimal evacuation path. First, the objective function of the optimal evacuation path is established in the improved model, and an iterative extended state observer is designed to get the estimated value. Second, the above model is verified through simulation experiments. The results show that, as the number of iterations increases, the evacuation time shows a trend of first decreasing and then increasing.


Sign in / Sign up

Export Citation Format

Share Document