Methyl red/lead sulphide/indium tin oxide hybrid organic/inorganic diode: An electrical and optoelectronic study

2021 ◽  
pp. 413142
Author(s):  
Abhijit Banerjee
Author(s):  
Abhijit Banerjee ◽  

The photosensitivity of aluminium (Al)/lead sulphide (PbS)/indium tin oxide (ITO) thin layered structure is investigated considering the photon wavelength dependent current-voltage and capacitance-voltage characteristics of the device. The current-voltage characteristics of the test structure are analyzed adopting the back-to-back Schottky barrier diode model. The diode possesses low dark current in contrast to the high value of photocurrents measured under different illumination wavelengths. The change in photocurrents with different illumination wavelengths clearly indicates the change in photo-sensitivity of the device. The capacitance-voltage characteristics of Al/PbS/ITO structure demonstrate a definite improvement of the device capacitance with the higher wavelength exposures. The matter is explained in terms of the additional capacitance owing to the excess carrier generation within the device under illumination. The photosensitivity modulation of the device can be exploited in photo-sensor or photo-detector applications in various electronic devices.


2019 ◽  
Vol 216 ◽  
pp. 111053 ◽  
Author(s):  
Abhijit Banerjee ◽  
Chirasmita Ghosh ◽  
Priyanka Chakraborty

2020 ◽  
Vol 13 (4) ◽  
pp. 722-727
Author(s):  
ZHU Ye-xin ◽  
◽  
◽  
LI Ya-nan ◽  
SHI Wei-jie ◽  
...  

1986 ◽  
Vol 22 (23) ◽  
pp. 1266 ◽  
Author(s):  
D.G. Parker ◽  
P.G. Say

The Analyst ◽  
1995 ◽  
Vol 120 (10) ◽  
pp. 2579-2583 ◽  
Author(s):  
Xiaohua Cai ◽  
Božidar Ogorevc ◽  
Gabrijela Tavčar ◽  
Joseph Wang

2021 ◽  
pp. 138731
Author(s):  
Bert Scheffel ◽  
Olaf Zywitzki ◽  
Thomas Preußner ◽  
Torsten Kopte

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Xiaoyan Liu ◽  
Lei Wang ◽  
Yi Tong

First-principle density functional theory simulations have been performed to predict the electronic structures and optoelectronic properties of ultrathin indium tin oxide (ITO) films, having different thicknesses and temperatures. Our results and analysis led us to predict that the physical properties of ultrathin films of ITO have a direct relation with film thickness rather than temperature. Moreover, we found that a thin film of ITO (1 nm thickness) has a larger absorption coefficient, lower reflectivity, and higher transmittance in the visible light region compared with that of 2 and 3 nm thick ITO films. We suggest that this might be due to the stronger surface strain effect in 1 nm thick ITO film. On the other hand, all three thin films produce similar optical spectra. Finally, excellent agreement was found between the calculated electrical resistivities of the ultrathin film of ITO and that of its experimental data. It is concluded that the electrical resistivities reduce along with the increase in film thickness of ITO because of the short strain length and limited bandgap distributions.


Sign in / Sign up

Export Citation Format

Share Document