Connecting the spatial structure of periodic orbits and invariant manifolds in hyperbolic area-preserving systems

2005 ◽  
Vol 347 (4-6) ◽  
pp. 200-207 ◽  
Author(s):  
M. Giona ◽  
S. Cerbelli
1993 ◽  
Vol 132 ◽  
pp. 73-89
Author(s):  
Yi-Sui Sun

AbstractWe have systematically made the numerical exploration about the perturbation extension of area-preserving mappings to three-dimensional ones, in which the fixed points of area preserving are elliptic, parabolic or hyperbolic respectively. It has been observed that: (i) the invariant manifolds in the vicinity of the fixed point generally don’t exist (ii) when the invariant curve of original two-dimensional mapping exists the invariant tubes do also in the neighbourhood of the invariant curve (iii) for the perturbation extension of area-preserving mapping the invariant manifolds can only be generated in the subset of the invariant manifolds of original two-dimensional mapping, (iv) for the perturbation extension of area preserving mappings with hyperbolic or parabolic fixed point the ordered region near and far from the invariant curve will be destroyed by perturbation more easily than the other one, This is a result different from the case with the elliptic fixed point. In the latter the ordered region near invariant curve is solid. Some of the results have been demonstrated exactly.Finally we have discussed the Kolmogorov Entropy of the mappings and studied some applications.


2015 ◽  
Vol 14 (1) ◽  
pp. 132-167 ◽  
Author(s):  
Roberto Castelli ◽  
Jean-Philippe Lessard ◽  
J. D. Mireles James

We study the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative. The prototype of such maps is the family f(y) = u —y 2 or (in different coordinates) f(y) = Ay(1 —y), in which case F^ e is the Henon map. The maps F e have constant Jacobian determinant e and, as e -> 0, collapse to the family f^. The behaviour of such one-dimensional families is quite well understood, and we are able to use their bifurcation structures and information on their non-wandering sets to obtain results on both local and global bifurcations of F/ ue , for small e . Moreover, we are able to extend these results to the area preserving family F/u. 1 , thereby obtaining (partial) bifurcation sets in the (/u, e)-plane. Among our conclusions we find that the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s theorem and the kneading theory for one-dimensional maps, is quite different for two-dimensional families. In particular, certain periodic orbits that appear at the end of the one-dimensional sequence appear at the beginning of the area preserving sequence, and infinitely many families of saddle node and period doubling bifurcation curves cross each other in the ( /u, e ) -parameter plane between e = 0 and e = 1. We obtain these results from a study of the homoclinic bifurcations (tangencies of stable and unstable manifolds) of F /u.e and of the associated sequences of periodic bifurcations that accumulate on them. We illustrate our results with some numerical computations for the orientation-preserving Henon map.


2007 ◽  
Vol 17 (09) ◽  
pp. 3295-3302 ◽  
Author(s):  
MONTSERRAT CORBERA ◽  
JAUME LLIBRE

In this paper we will find continuous periodic orbits passing near infinity for a class of polynomial vector fields in ℝ3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane Σ and that possess a "generalized heteroclinic loop" formed by two singular points e+ and e- at infinity and their invariant manifolds Γ and Λ. Γ is an invariant manifold of dimension 1 formed by an orbit going from e- to e+, Γ is contained in ℝ3 and is transversal to Σ. Λ is an invariant manifold of dimension 2 at infinity. In fact, Λ is the two-dimensional sphere at infinity in the Poincaré compactification minus the singular points e+ and e-. The main tool for proving the existence of such periodic orbits is the construction of a Poincaré map along the generalized heteroclinic loop together with the symmetry with respect to Σ.


2011 ◽  
Vol 109 (3) ◽  
pp. 241-264 ◽  
Author(s):  
Kathryn E. Davis ◽  
Rodney L. Anderson ◽  
Daniel J. Scheeres ◽  
George H. Born

1987 ◽  
Vol 7 (4) ◽  
pp. 567-595 ◽  
Author(s):  
Fernando Oliveira

AbstractThis work is concerned with the generic existence of homoclinic points for area preserving diffeomorphisms of compact orientable surfaces. We give a shorter proof of Pixton's theorem that shows that, Cr-generically, an area preserving diffeomorphism of the two sphere has the property that every hyperbolic periodic point has transverse homoclinic points. Then, we extend Pixton's result to the torus and investigate certain generic aspects of the accumulation of the invariant manifolds all over themselves in the case of symplectic diffeomorphisms of compact manifolds.


Sign in / Sign up

Export Citation Format

Share Document