scholarly journals Opinion particles: Classical physics and opinion dynamics

2015 ◽  
Vol 379 (3) ◽  
pp. 89-94 ◽  
Author(s):  
André C.R. Martins
2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


2019 ◽  
Author(s):  
Irina Vartanova ◽  
Kimmo Eriksson ◽  
Pontus Strimling

Author(s):  
Richard Healey

Novel quantum concepts acquire content not by representing new beables but through material-inferential relations between claims about them and other claims. Acceptance of quantum theory modifies other concepts in accordance with a pragmatist inferentialist account of how claims acquire content. Quantum theory itself introduces no new beables, but accepting it affects the content of claims about classical magnitudes and other beables unknown to classical physics: the content of a magnitude claim about a physical object is a function of its physical context in a way that eludes standard pragmatics but may be modeled by decoherence. Leggett’s proposed test of macro-realism illustrates this mutation of conceptual content. Quantum fields are not beables but assumables of a quantum theory we use to make claims about particles and non-quantum fields whose denotational content may also be certified by models of decoherence.


2021 ◽  
Vol 16 (2) ◽  
pp. 1-34
Author(s):  
Rediet Abebe ◽  
T.-H. HUBERT Chan ◽  
Jon Kleinberg ◽  
Zhibin Liang ◽  
David Parkes ◽  
...  

A long line of work in social psychology has studied variations in people’s susceptibility to persuasion—the extent to which they are willing to modify their opinions on a topic. This body of literature suggests an interesting perspective on theoretical models of opinion formation by interacting parties in a network: in addition to considering interventions that directly modify people’s intrinsic opinions, it is also natural to consider interventions that modify people’s susceptibility to persuasion. In this work, motivated by this fact, we propose an influence optimization problem. Specifically, we adopt a popular model for social opinion dynamics, where each agent has some fixed innate opinion, and a resistance that measures the importance it places on its innate opinion; agents influence one another’s opinions through an iterative process. Under certain conditions, this iterative process converges to some equilibrium opinion vector. For the unbudgeted variant of the problem, the goal is to modify the resistance of any number of agents (within some given range) such that the sum of the equilibrium opinions is minimized; for the budgeted variant, in addition the algorithm is given upfront a restriction on the number of agents whose resistance may be modified. We prove that the objective function is in general non-convex. Hence, formulating the problem as a convex program as in an early version of this work (Abebe et al., KDD’18) might have potential correctness issues. We instead analyze the structure of the objective function, and show that any local optimum is also a global optimum, which is somehow surprising as the objective function might not be convex. Furthermore, we combine the iterative process and the local search paradigm to design very efficient algorithms that can solve the unbudgeted variant of the problem optimally on large-scale graphs containing millions of nodes. Finally, we propose and evaluate experimentally a family of heuristics for the budgeted variant of the problem.


Sign in / Sign up

Export Citation Format

Share Document